في هذه الورقة، نقترح نموذجا مقرا له عناية سياقية مع تدريبات دقيقة على مرحلتين باستخدام روبرتا.أولا، نقوم بإجراء النغمة الجميلة في المرحلة الأولى على Corpus مع روبرتا، بحيث يمكن للنموذج أن يتعلم بعض المعرفة المسبقة المجال.ثم نحصل على التضمين السياقي بكلمات السياق بناء على التضمين على مستوى الرمز المميز مع النموذج الدقيق.ونحن نستخدم KFOFT التحقق من الصحة للحصول على نماذج K وفرقة لهم للحصول على النتيجة النهائية.أخيرا، نحن نحصل على المركز الثاني في مرحلة التقييم النهائي من المهمة الفرعية 2 مع ارتباط بيرسون ب 0.8575.
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the contextual embedding of context words based on the token-level embedding with the fine-tuned model. And we use Kfold cross-validation to get K models and ensemble them to get the final result. Finally, we attain the 2nd place in the final evaluation phase of sub-task 2 with pearson correlation of 0.8575.
المراجع المستخدمة
https://aclanthology.org/
تنقل تنبؤ التعقيد المعجمي (LCP) باحسن مستوى تعقيد رمز رمزي أو مجموعة من الرموز في جملة.يلعب دورا حيويا في تحسين مهام NLP المختلفة بما في ذلك التبسيط المعجمي والترجمات وتوليد النص.ومع ذلك، فإن المعنى المتعدد لكلمة في ظروف متعددة، وهيكل مجمع نحوي، والا
تصف هذه الورقة نظام مقدم من فريق Biggreen إلى LCP 2021 للتنبؤ بالتعقيد المعجمي للكلمات الإنجليزية في سياق معين.نحن نكرب نموذجا يعتمد على الهندسة مع نموذج شبكة عصبي عميق تأسست على بيرتف.بينما ينفذ بيرت نفسها بشكل تنافسي، فإن نموذجنا القائم على الهندسة
نقترح نموذج فرقة للتنبؤ بالتعقيد المعجمي للكلمات وتعبيرات متعددة الكلمات (MWES).يتلقى النموذج كإدخال جملة بكلمة مستهدفة أو MWE وتخرج درجة التعقيد.بالنظر إلى أن التحدي الرئيسي مع هذه المهمة هو الحجم المحدود للبيانات المشروح، يعتمد نموذجنا على تمثيلات
توضح هذه الورقة تقديم فريق LCP-RIT إلى مهمة Semeval-2021 1: تنبؤ التعقيد المعجمي (LCP).قدم منظمو المهام للمشاركين نسخة معدية من المعقد (Shardlow et al.، 2020)، ومجموعة بيانات إنجليزية متعددة المجالات التي تم تفاحها الكلمات في السياق فيما يتعلق بعقوده
التعقيد المعجمي يلعب دورا مهما في فهم القراءة.لا يمكن استخدام تنبؤ التعقيد المعجمي (LCP) كجزء من أنظمة التبسيط المعجمية، ولكن أيضا كتطبيق مستقل لمساعدة الأشخاص على قراءة أفضل.تقدم هذه الورقة النظام الفائز الذي قدمناه إلى مهمة LCP المشتركة في Semeval