في هذا العمل، ندرس مهمة تصنيف النصوص القانونية المكتوبة باللغة اليونانية. نقدم واجعلنا متاحا علنا مجموعة بيانات جديدة تستند إلى التشريعات اليونانية، والتي تتكون من أكثر من 47 ألف مسؤول، صنفت موارد التشريعات اليونانية المصنفة. نقوم بتجربة هذه البيانات وتقييم بطارية الأساليب المتقدمة والصفوفات المصنفة، تتراوح من تعلم الآلات التقليدية والطرق القائمة على RNN إلى الأساليب القائمة على المحولات الحديثة. نظرا لأن الهندسة المعمارية المتكررة مع Adminings Word الخاصة بالمجال توفر الأداء العام المحسن أثناء التنافس حتى إلى النماذج القائمة على المحولات. أخيرا، نظهر أن النماذج المتطورة متعددة اللغات والأنتغات التي تعتمد على المحولات التي تعمل على أعلى تصنيف من تصنيف الصفوصين، مما يجعلنا شكا من ضرورة تدريب نماذج تعلم نقل أحادية التحويل كقاعدة عامة. على حد علمنا، هذه هي المرة الأولى التي يتم فيها النظر في مهمة تصنيف النص القانوني اليوناني في مشروع بحث مفتوح، في حين أن اليونانية هي لغة مع موارد NLP محدودة للغاية بشكل عام.
In this work, we study the task of classifying legal texts written in the Greek language. We introduce and make publicly available a novel dataset based on Greek legislation, consisting of more than 47 thousand official, categorized Greek legislation resources. We experiment with this dataset and evaluate a battery of advanced methods and classifiers, ranging from traditional machine learning and RNN-based methods to state-of-the-art Transformer-based methods. We show that recurrent architectures with domain-specific word embeddings offer improved overall performance while being competitive even to transformer-based models. Finally, we show that cutting-edge multilingual and monolingual transformer-based models brawl on the top of the classifiers' ranking, making us question the necessity of training monolingual transfer learning models as a rule of thumb. To the best of our knowledge, this is the first time the task of Greek legal text classification is considered in an open research project, while also Greek is a language with very limited NLP resources in general.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقدم الإصدار اليوناني من خاطئ أداة التوضيح التلقائية (براينت وآخرون، 2017)، والتي أطلقنا عليها اسم Elerrant.وظائف خاطئة كتصنيف نوع من نوع الخطأ القاعدة واستخدامه كأداة التقييم الرئيسية للأنظمة المشاركة في BEA-2019 (براينت وآخرون، 2019)
في الآونة الأخيرة، تصبح نماذج الهجوم المصنوع النصي شعبية بشكل متزايد بسبب نجاحها في تقدير نماذج NLP. ومع ذلك، فإن المصنفات الموجودة لها أوجه قصور واضحة. (1) عادة ما يفكرون فقط بتعبئة واحدة من استراتيجيات التعديل (على سبيل المثال Word-level-level-leve
يتعامل تصنيف النص المتعدد التسميات الهرمية (HMTC) مع المهمة الصعبة التي يمكن فيها تعيين مثيل للفئات المهيكية المتعددة في نفس الوقت. غالبية الدراسات السابقة إما أن تركز على تقليل مهمة HMTC إلى مشكلة مسطحة متعددة العلامات تتجاهل علاقات الفئات الرأسية أ
نقدم متعدد اليوراء، مجموعة بيانات جديدة متعددة اللغات لتصنيف الموضوع للوثائق القانونية. تضم DataSet قوانين الاتحاد الأوروبي 65 ألف (EU)، والتي ترجمت رسميا في 23 لغة، مشروحا بالملصقات المتعددة من تصنيف Eurovoc. نسلط الضوء على تأثير المنفأة الزمنية الا
حقق تمثيلات تشفير ثنائية الاتجاه من المحولات (بيرت) عروضا حديثة على العديد من مهام تصنيف النص، مثل تحليل الغراء والمعنويات. بدأ العمل الأخير في المجال القانوني في استخدام بيرت في المهام، مثل التنبؤ بالحكم القانوني والتنبؤ بالانتهاك. تتمثل الممارسات ا