تحتوي التعليقات السامة على أشكال لغة غير مقبولة مستهدفة نحو مجموعات أو أفراد.تصبح هذه الأنواع من التعليقات مصدر قلق خطير للمنظمات الحكومية والمجتمعات عبر الإنترنت ومنصات وسائل التواصل الاجتماعي.على الرغم من وجود بعض الأساليب للتعامل مع اللغة غير المقبولة، فإن معظمها يركز على التعلم الإشراف واللغة الإنجليزية.في هذه الورقة، نتعامل مع اكتشاف التعليق السام كاستراتيجية شبه مشتركة على رسم بياني غير متجانس.نقوم بتقييم النهج على مجموعة بيانات سامة من اللغة البرتغالية، مما يتفوق على العديد من الأساليب القائمة على الرسم البياني وتحقيق نتائج تنافسية مقارنة بمناطق المحولات.
Toxic comments contain forms of non-acceptable language targeted towards groups or individuals. These types of comments become a serious concern for government organizations, online communities, and social media platforms. Although there are some approaches to handle non-acceptable language, most of them focus on supervised learning and the English language. In this paper, we deal with toxic comment detection as a semi-supervised strategy over a heterogeneous graph. We evaluate the approach on a toxic dataset of the Portuguese language, outperforming several graph-based methods and achieving competitive results compared to transformer architectures.
المراجع المستخدمة
https://aclanthology.org/
في هذا العمل، نقدم نهجنا ونتائجنا لمهمة Semeval-2021 للكشف عن الفقاعات السامة.كان الهدف الرئيسي للمهمة هو تحديد المواقيات التي يمكن أن تعزى سمية نص معين.المهمة تحديا أساسا بسبب قيود اثنين: مجموعة بيانات التدريب الصغيرة وتوزيع الفئة غير المتوازنة.تقوم
تهدف إلى توليد معجم البذور للاستخدام في مهام اللغة الطبيعية المصب والأساليب غير الخاضعة للرقابة لتحريض المعجم الثنائي اللغة قد حصلت على الكثير من الاهتمام في الأدبيات الأكاديمية مؤخرا. في حين أن الإعدادات المثيرة للاهتمام وغير المدمرة بالكامل غير واق
الاستعارات في كل مكان في اللغة الطبيعية، ويتطلب الكشف عنها منطق سياقي حول ما إذا كان التعارض الدلالي موجود بالفعل.معظم العمل الحالي يعالج هذه المشكلة باستخدام نماذج السياق المدربة مسبقا.على الرغم من نجاحها، تتطلب هذه النماذج كمية كبيرة من البيانات ال
تتناول هذه الورقة تحديد تعليقات سامة ومشاركة وتحقيق الحقائق على وسائل التواصل الاجتماعي.استخدمنا مجموعة البيانات المتاحة من قبل منظمي المهمة المشتركة Germeval2021 التي تحتوي على أكثر من 3000 تعليقات Facebook المزروعة يدويا باللغة الألمانية.بالنظر إلى
أدى توافر تمثيلات اللغة التي تعلمتها نماذج الشبكة العصبية العصبية الكبيرة (مثل Bert and Electra) إلى تحسينات في العديد من مهام معالجة اللغة الطبيعية المصب في السنوات الأخيرة.تختلف النماذج المحددة عادة في الأهداف المحددة، والبنية، ومجموعات البيانات ال