في هذا العمل، نقدم نهجنا ونتائجنا لمهمة Semeval-2021 للكشف عن الفقاعات السامة.كان الهدف الرئيسي للمهمة هو تحديد المواقيات التي يمكن أن تعزى سمية نص معين.المهمة تحديا أساسا بسبب قيود اثنين: مجموعة بيانات التدريب الصغيرة وتوزيع الفئة غير المتوازنة.تقوم ورقتنا بالتحقيق في تقنيين، وتعلم شبه إشراف وتعلم مع فقدان النرد ضبط النفس، لمعالجة هذه التحديات.يتألف نظامنا المقدم (المرتبة التاسعة على متن القائد) من مجموعة من مختلف نماذج اللغة المحولات المدربة مسبقا تدربت باستخدام أي من التقنيات المذكورة أعلاه.
In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task's main aim was to identify spans to which a given text's toxicity could be attributed. The task is challenging mainly due to two constraints: the small training dataset and imbalanced class distribution. Our paper investigates two techniques, semi-supervised learning and learning with Self-Adjusting Dice Loss, for tackling these challenges. Our submitted system (ranked ninth on the leader board) consisted of an ensemble of various pre-trained Transformer Language Models trained using either of the above-proposed techniques.
المراجع المستخدمة
https://aclanthology.org/
تتطلب مهمة الكشف عن المسافة السامة في Semeval-2021 المشاركين الذين يتعين على المشاركين التنبؤ بالوظائف السامة التي كانت مسؤولة عن الملصق السام للوظائف.يمكن معالجة المهمة كمصموع تسلسل إشراف، باستخدام بيانات التدريب مع يمتد سامة الذهب المقدمة من المنظم
اكتشاف المواقف السامة - اكتشاف سمية المحتويات في حبيبتي الرموز - أمر حاسم للاعتدال الفعال للمناقشات عبر الإنترنت.تتمثل النهج الأساسي في هذه المشكلة في استخدام نموذج المحول في إضافة رأس تصنيف رمزي إلى طراز اللغة وضبط الطبقات الدقيقة مع مجموعة بيانات ا
تقدم هذه الورقة التقديم الخاص بنا إلى مهمة Semeval-2021 5: الكشف عن الأمور السامة.الغرض من هذه المهمة هو اكتشاف المواقف التي تجعل النص ساما، وهو عمل معقد لعدة أسباب.أولا، بسبب الذاتية الجوهرية للسمية، وثانيا، بسبب السمية لا تأتي دائما من كلمات مفردة
تقدم هذه الورقة نظام يستخدم لمهمة Semeval-2021 5: الكشف عن المسافة السامة.نظامنا هو مجموعة من النماذج القائمة على بيرت لتصنيف الكلمة الثنائية، مدربة على مجموعة بيانات تمتد بواسطة التعليقات السامة المعدلة وتولدها نماذج لغتين.بالنسبة لتصنيف الكلمة السا
تصف هذه الورقة مشاركة فريق سيناء في المهمة 5: الكشف عن الأمور السامة التي تتكون من تحديد المواقف التي تجعل النص سام.على الرغم من أن العديد من الموارد والأنظمة قد تم تطويرها حتى الآن في سياق اللغة الهجومية، ركزت كل من التوضيحية والمهام بشكل رئيسي على