ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم المتعدد اللغات لفحص ضعف المعرفي المعتدل من مهمة الكلام السريرية

Multilingual Learning for Mild Cognitive Impairment Screening from a Clinical Speech Task

281   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعد مهمة الطلاقة اللفظية الدلالية (SVF) أداة للفحص الفعال والغازي في الكلام من أجل ضعف المعرفي المعتدل (MCI). في SVF، يتعين على الشاشات إنتاج أكبر عدد ممكن من الكلمات للحصول على فئة دلالية معينة قدر الإمكان في غضون 60 ثانية. من بين النهج الحديثة للتقييم التلقائي ل SVF توظف Word Adgeddings لتحليل أوجه التشابه الدلالي في تسلسل الكلمات هذه. في حين أثبتت هذه الأساليب الواعدة في مجموعة متنوعة من لغات الاختبار، فإن كمية البيانات الصغيرة المتاحة لأي لغة معينة تحد من الأداء. في هذه الورقة، نحن في المرة الأولى التي تحقق فيها مناهج التعلم متعددة اللغات لتصنيف MCI من SVF من أجل مكافحة ندرة البيانات. للسماح للتعميم عبر اللغات، تعتمد هذه الأساليب إما على الترجمة إلى لغة مشتركة، أو الاستفادة من العديد من تضمين كلمة مميزة. في التقييمات في جثة متعددة اللغات من المشاركين الفرنسيين الأكبر سنا والمشاركين الهولنديين والألمانيين (الضوابط = 66، MCI = 66)، نظين أن نهجنا متعددة اللغات تتحسن بوضوح على خطوط خطوط خطوط خطوط وطنية واحدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لقد ثبت أن التدريبات متعددة المهام مع المهام الإضافية يمكن أن تحسن جودة المهمة المستهدفة من خلال نقل المهام العابر.ومع ذلك، من المحتمل أن تكون أهمية كل مهمة مساعدة للمهمة الأساسية غير معروفة مسبقا.في حين أن أهمية الأثقال ذات المهام الإضافية يمكن ضبطه ا يدويا، إلا أنها تصبح عمليا غير قابلة للتنفيذ مع عدد المهام.لمعالجة هذا، نقترح طريقة بحث تقوم تلقائيا بتعيين الأوزان الأهمية.نقوم بصياغة ذلك كمشكلة تعليمية للتعزيز وتعلم جدول أخذ عينات من المهام بناء على دقة تقييم النموذج متعدد المهام.يوضح تقييمنا التجريبي على XNLI والغراء أن أسلوبنا تتفوق على أخذ العينات الموحدة والساعي الأساسي المهمة الموحدة المقابلة.
نحن نتطلع إلى مهمة اكتشاف الكلام الكراهية التلقائي لغات الموارد المنخفضة.بدلا من جمع وإشراف بيانات خطاب الكراهية الجديدة، نوضح كيفية استخدام التعلم عبر التحويلات عبر اللغات للاستفادة من البيانات الموجودة بالفعل من لغات الموارد العالية.باستخدام مصنفات مقرها Word من Word، نحقق الأداء الجيد على اللغة المستهدفة من خلال التدريب فقط على مجموعة بيانات المصدر.باستخدام نظامنا المنقول، نحن Bootstrap على بيانات اللغة المستهدفة غير المستهدفة، وتحسين أداء نهج النقل المتبادل القياسي.نحن نستخدم اللغة الإنجليزية كلغة موارد عالية والألمانية مثل اللغة المستهدفة التي تتوفر فقط كمية صغيرة من كورسا المشروح.تشير نتائجنا إلى أن التعلم عبر التحويلات الشاملة للتعلم مع نهجنا للاستفادة من البيانات الإضافية غير المسبقة هي وسيلة فعالة لتحقيق الأداء الجيد على لغات مستهدفة منخفضة الموارد دون الحاجة إلى أي شروح لغة الهدف.
في هذه الورقة، نصف نظام ترجمة الكلام متعددة اللغات نهاية إلى نهاية المقدمة إلى حملة تقييم IWSLT 2021 في مهمة مشتركة من خطابات الكلام متعددة اللغات. بنيت نظامنا من خلال الاستفادة من التعلم النقل عبر الطرائق والمهام واللغات. أولا، نحن نستفيد الوحدات مت عددة اللغات للأغراض العامة مسببة اللغات مع كميات كبيرة من البيانات غير المسماة والمصدرة. ونحن كذلك تمكين نقل المعرفة من مهمة النص إلى مهمة خطاب من خلال التدريب بمهامتين بالاشتراك. أخيرا، يتم تصوير نموذجنا متعدد اللغات في البيانات الخاصة ببيانات المهام الخاصة بترجمة الكلام لتحقيق أفضل نتائج الترجمة. تظهر النتائج التجريبية أن نظامنا يتفوق على الأنظمة المبلغ عنها، بما في ذلك النهج القائمة على المناسبة والمتوسطة، بتهامش كبير. في بعض اتجاهات الترجمة، تعد نتائج ترجمة الكلام التي تم تقييمها على مجموعة اختبار TEDX متعددة اللغات متعددة اللغات مقارنة مع تلك الموجودة من نظام ترجمة نصية قوية للنص، والذي يستخدم النصوص أوراكل الكلام كإدخال.
تحتوي هذه الورقة على وصف لتقديم معهد Karlsruhe للتكنولوجيا (KIT) لمهمة ترجمة TEDX متعددة اللغات في حملة تقييم IWSLT 2021.نهجنا الرئيسي هو تطوير كل من النظم المتتالية ونظم نهاية إلى نهاية وتجمع بينها في نهاية المطاف لتحقيق أفضل النتائج الممكنة لهذا ال إعداد المنخفض للغاية الموارد.يؤكد التقرير أيضا تحسين بعض التحسن المعماري المتسق إضافته إلى بنية المحولات، لجميع المهام: ترجمة الترجمة والنسخ والنطق.
يستخدم التعلم النشط (AL) خوارزمية اختيار البيانات لتحديد عينات تدريب مفيدة لتقليل تكلفة التوضيحية. هذه هي الآن أداة أساسية لبناء محلل تحويلات تحويلية منخفضة الموارد مثل Taggers جزء من الكلام (POS). يتم تصميم الاستدلال الموجودة بشكل عام بشكل عام على م بدأ اختيار مثيلات تدريبية غير مؤكدة ولكنها قد تقلل من هذه الحالات تقليل عدد كبير من الأخطاء. ومع ذلك، في دراسة تجريبية عبر ست لغات متنوعة من النطباض (الألمانية والسويدية والاجنية والشابات الشمالية والفارسية والأوكرانية)، وجدنا النتيجة المثيرة للدهشة أنه حتى في سيناريو أوراكل حيث نعرف عدم اليقين الحقيقي للتوقعات، هذه الاستدلال الحالية بعيدون عن الأمثل. بناء على هذا التحليل، نطرح مشكلة آل كما اختيار الحالات التي تقلل من الارتباك بين أزواج من علامات الإخراج معينة. تظهر تجربة واسعة النطاق على اللغات المذكورة أعلاه أن استراتيجيتنا المقترحة تتفوق على استراتيجيات آجال أخرى من هامش مهم. نقدم أيضا نتائج مساعدة توضح أهمية المعايرة المناسبة للنماذج، والتي نضمنها من خلال التدريب المبريد، وتحليلا إظهار كيفية تحديد استراتيجيتنا المقترحة أمثلة تتابع بشكل وثيق توزيع بيانات Oracle. يتم إصدار الرمز علني هنا

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا