ترغب بنشر مسار تعليمي؟ اضغط هنا

Litescale: أداة خفيفة الوزن للحصول على شرح أفضل أسوأ

Litescale: A Lightweight Tool for Best-worst Scaling Annotation

244   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أفضل تحجيم (BWS) أفضل منهجية للتعليق على أساس مثيلات مقارنة والترتيب، بدلا من تصنيف أو تسجيل الحالات الفردية.أظهرت الدراسات فعالية هذه المنهجية المطبقة على مهام NLP من حيث جودة عالية من مجموعات البيانات الناتجة عن طريق ذلك.في ورقة مظاهرة النظام هذه، نقدم LitEScale، مكتبة برامج مجانية لإنشاء وإدارة مهام التوضيحية BWS.يحسب LitEScale tuples typles للتعليق ويدير المستخدمين وعملية التوضيحية، ويخلق معيار الذهب النهائي.يمكن الوصول إلى وظائف LitEScale برمجيا من خلال وحدة نمطية Python، أو عبر واجهتين لمستخدمين بديلين، واحدة قائمة على وحدة التحكم النصية ومقرها على الويب.لقد نمت ونشرنا أيضا نسخة كاملة من Litescale كاملة مع دعم متعدد المستخدمين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تشمل اللغة البشرية أكثر من مجرد نص؛كما أنه ينقل العواطف من خلال النغمة والإيماءات.نقدم دراسة حالة لثلاث هندسة بسيطة وفعالة قائمة على المحولات لتنبؤ المعنويات والعاطفة في البيانات متعددة الوسائط.يقوم نموذج الانصهار المتأخر بدمج ميزات Unimodal لإنشاء ت سلسل ميزة متعددة الوسائط، يجمع نموذج Robin Robin بشكل متكرر بين ميزات BIMODAL باستخدام اهتماما عبر الوسائط، ويجمع نموذج الانصهار الهجين بين ميزات Trimodal و Unimodal معا لتشكيل تسلسل مائع نهائي للتنبؤ بالمشاعر.تبين تجاربنا أن نماذجنا الصغيرة فعالة ومتفوقة على الإصدارات التي تم إصدارها علنا من أنظمة تحليل المعنويات متعددة الوسائط الأكبر والحديثة.
القدرة على توليد محاذاة كلمة دقيقة مفيدة لمجموعة متنوعة من المهام.في حين أن محاذاة الكلمة الإحصائية يمكن أن تعمل بشكل جيد، خاصة عندما تكون بيانات التدريب الموازية وفيرة، فقد تبين مؤخرا نماذج تضمين متعددة اللغات نتائج جيدة في سيناريوهات غير مخالفة.نقي م طريقة فرقة لمحاذاة الكلمات على أربع أزواج لغوية وإظهار ذلك من خلال الجمع بين أدوات متعددة، والاستفادة من نهجها المختلفة، يمكن إجراء مكاسب كبيرة.هذا يحمل للإعدادات التي تتراوح من الموارد المنخفضة جدا إلى المورد العالي.علاوة على ذلك، نقدم اختبار محاذاة ذهبي جديد مجموعة أيسلندية وأداة جديدة سهلة الاستخدام لإنشاء محاذاة Word يدوية.
أظهرت نماذج Graph Graph الحديثة (KGE) على أساس الهندسة الزئوية إمكانات كبيرة في مساحة تضمين منخفضة الأبعاد. ومع ذلك، لا تزال ضرورة الفضاء القطعي في كوريا العليا مشكوك فيها، لأن الحساب الذي يعتمد على الهندسة الزئوية أكثر تعقيدا بكثير من عمليات Euclide an. في هذه الورقة، استنادا إلى مجموعة من طراز Hyperbolic Typerbolic، نطور اثنين من النماذج المستندة إلى Euclidean خفيفة الوزن، تسمى Rotl و Rot2L. يسبق نموذج ROTL العمليات القطعي مع الحفاظ على تأثير التطبيع المرن. الاستفادة من تحول مكدسة طبقة رواية واستنادا إلى ROTL، يحصل نموذج Rot2L على إمكانية تحسين تمثيل، ومع ذلك يكلف عددا أقل من المعلمات والحسابات من روث. تظهر التجارب على تنبؤ الارتباط أن ROT2L يحصل على الأداء الحديثة على مجموعة من مجموعات البيانات المستخدمة على نطاق واسع في مدمج الرسم البياني المعرفي منخفض الأبعاد. علاوة على ذلك، يحقق Rotl أداء مماثل ك Roth ولكن يتطلب فقط نصف وقت التدريب.
تركز معالجة اللغة الطبيعية الحالية بقوة على زيادة الدقة.يأتي التقدم بتكلفة نماذج فائقة الثقيلة مع مئات الملايين أو حتى مليارات المعلمات.ومع ذلك، فإن المهام النحوية البسيطة مثل وضع العلامات على جزء من الكلام (POS) أو تحليل التبعية أو التعرف على الكيان المسمى (NER) لا تحتاج إلى أكبر النماذج لتحقيق نتائج مقبولة.تمشيا مع هذا الافتراض، نحاول تقليل حجم النموذج الذي ينفذ بشكل مشترك جميع المهام الثلاثة.نقدم Comboner: أداة خفيفة الوزن، أوامر ذات حجم أصغر من المحولات الحديثة.يعتمد على مدمج الكلمات الفرعية المدربة مسبقا بنية الشبكة العصبية المتكررة.يعمل COMBONER على بيانات اللغة البولندية.يحتوي النموذج على مخرجات لوضع العلامات على نقاط البيع والتحليل التبعية و NER.تحتوي ورقةنا على بعض الأفكار من ضبط النموذج الدقيق والتقارير عن نتائجها الإجمالية.
كانت النماذج اللغوية الكبيرة المدربة مسبقا مثل بيرت القوة الدافعة وراء التحسينات الأخيرة في العديد من مهام NLP.ومع ذلك، يتم تدريب بيرت فقط على التنبؤ بالكلمات المفقودة - إما من خلال اخفاء أو تنبؤ الجملة التالي - وليس لديه معرفة بالمعلومات المعجمية أو النحوية أو الدلالية التي تتجاوز ما يلتقطه من خلال التدريب المسبق غير المدعوم.نقترح طريقة جديدة لحقن المعلومات اللغوية بشكل صريح في شكل embeddings في أي طبقة من بيرت المدرب مسبقا.عند ضمانات المضادات المضادة ومقرها التبعية، تشير تحسينات الأداء على مجموعات بيانات التشابه الدلالية المتعددة إلى أن هذه المعلومات مفيدة وفقدها حاليا من النموذج الأصلي.يوضح تحليلنا النوعي أن حقن التضمين المضاد للأدمان مفيد بشكل خاص، مع تحسينات ملحوظة على الأمثلة التي تتطلب دقة مرادف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا