وصفنا أنظمة جامعة ألبرتا لمهمة الغموض في السياق Semeval-2021 (WIC).نستكشف استخدام معلومات الترجمة لتحديد ما إذا كان هناك رموزان مختلفان من نفس الكلمة يتوافق مع نفس الشعور بالكلمة.يركز تركيزنا على تطوير النهج النظرية المبدئية التي ترتكز في الظواهر اللغوية، مما يؤدي إلى نماذج أكثر قابل للتفسير.نظهر أن الترجمات من لغات متعددة يمكن أن يتم الاستفادة منها لتحسين الدقة في مهمة WIC.
We describe the University of Alberta systems for the SemEval-2021 Word-in-Context (WiC) disambiguation task. We explore the use of translation information for deciding whether two different tokens of the same word correspond to the same sense of the word. Our focus is on developing principled theoretical approaches which are grounded in linguistic phenomena, leading to more explainable models. We show that translations from multiple languages can be leveraged to improve the accuracy on the WiC task.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة التقديم الخاص بنا إلى مهمة Semeval 2021 2. نحن نقارن قاعدة XLM-Roberta وكبير في إعدادات القليل من اللقطات والطلق الرصاص واختبار فعاليا فعالية استخدام مصنف جيران K-Enter في إعداد القليل من القصاصات بدلا منأكثر التقليدية متعددة الطبقات p
في هذه الورقة، نصف أساليبنا المقترحة لمهمة الغموض المتعددة اللغات في السياق في Semeval-2021.في هذه المهمة، يجب أن تحدد الأنظمة ما إذا كانت الكلمة التي تحدث في جملتين مختلفة يتم استخدامها بنفس المعنى أم لا.اقترحنا عدة طرق باستخدام نموذج بيرت المدرب مس
تقدم هذه الورقة نظام GX لمهمة الغموض المتعددة اللغات واللغة اللغوية في السياق (MCL-WIC).الغرض من المهمة MCL-WIC هو معالجة التحدي المتمثل في التقاط الطبيعة Polysemous للكلمات دون الاعتماد على مخزون ثابت ثابت في بيئة متعددة اللغات واللغة اللغوية.لحل ال
تقدم هذه الورقة نظام الفوز لفريق بالي لمهمة SEMEVAL-2021 2: غزالة متعددة اللغات والتبلغة في السياق.نحن نغتنم نموذج XLM-Roberta لحل مهمة Word في حالة غموض السياق، أي، لتحديد ما إذا كانت الكلمة المستهدفة في السياقتين تحتوي على نفس المعنى أم لا.في التنف
تصف هذه الورقة نظام فريق Cambridge المقدم إلى المهمة المشتركة SEMEVAL-2021 على الغموض المتعدد اللغات واللغة الاجتماعية في السياق.بناء فوق نموذج لغة ملثم مسبقا مدرب مسبقا، يتم تدريب نظامنا أولا مسبقا على بيانات خارج المجال، ثم ضبطها على بيانات داخل ال