السمية منتشرة في وسائل التواصل الاجتماعي وتشكل تهديدا كبيرا لصحة المجتمعات عبر الإنترنت.أدت مقدمة أحدث نماذج اللغة المدربة مسبقا، والتي حققت نتائج أحدث من المهام في العديد من المهام NLP، الطريقة التي نقترب بها معالجة اللغة الطبيعية.ومع ذلك، فإن الطبيعة الكامنة للتدريب المسبق تعني أنها من غير المرجح أن تلتقط المعلومات الإحصائية الخاصة بمهام المهام أو تعلم المعرفة الخاصة بالمجال.بالإضافة إلى ذلك، لا تستخدم معظم تطبيقات هذه النماذج الحقول العشوائية الشرطية، وهي طريقة لتصنيف الرمز المميز في وقت واحد.نظظ أن هذه التعديلات يمكن أن تحسن الأداء النموذجي على مهمة الكشف عن المسافة السامة في Semeval-2021 لتحقيق درجة في غضون 4 نقاط مئوية من أعلى فريق الأداء.
Toxicity is pervasive in social media and poses a major threat to the health of online communities. The recent introduction of pre-trained language models, which have achieved state-of-the-art results in many NLP tasks, has transformed the way in which we approach natural language processing. However, the inherent nature of pre-training means that they are unlikely to capture task-specific statistical information or learn domain-specific knowledge. Additionally, most implementations of these models typically do not employ conditional random fields, a method for simultaneous token classification. We show that these modifications can improve model performance on the Toxic Spans Detection task at SemEval-2021 to achieve a score within 4 percentage points of the top performing team.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة تقديم نظامنا إلى المهمة 5: تمثل المسابقة السامة من مسابقة Semeval-2021.تهدف المنافسة إلى اكتشاف الجرف الذي يصنع سامة سامة.في هذه الورقة، نوضح نظامنا للكشف عن المواقف السامة، والتي تشمل توسيع نطاق التدريب السام الذي تم تعيينه مع تفسيرا
في هذه الورقة، نصف نظامنا المستخدمة في مهمة Semeval 2021 5: الكشف عن الأمور السامة.ينتهك نظامنا المقترح من مشكلة مهمة تصنيف رمزية.قمنا بتدريب نموذجنا للعثور على كلمات سامة وتسلسل يمتد إلى التنبؤ باليوفق السام في غضون جملة.نحن نطبات نماذج اللغة المدرب
توضح هذه الورقة النظام الذي طوره مركز أنتويرب للعلوم الإنسانية الرقمية والنقد الأدبي [UANTWERP] للكشف عن السامة.استخدمنا مجموعة تعميم مكدسة من خمسة نماذج مكونة، مع تفسيرات مميزة للمهمة.حاولت نماذج التنبؤ بتسمم سمية الكلمات الثنائية بناء على تسلسل الن
إن التنبؤ بمستوى تعقيد كلمة أو عبارة تعتبر مهمة صعبة.يتم التعرف عليه حتى كخطوة حاسمة في العديد من تطبيقات NLP، مثل إعادة ترتيب النصوص ومبسط النص.تعامل البحث المبكر المهمة بمثابة مهمة تصنيف ثنائية، حيث توقعت النظم وجود تعقيد كلمة (معقد مقابل غير معقدة
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ