ترتيب الجملة هي مهمة ترتيب كيس معين من الجمل لتحقيق أقصى قدر من الاتساق النص العام.في هذا العمل، نقترح طريقة تدريبية بسيطة ولكنها فعالة تعمل على تحسين قدرة النماذج على التقاط تماسك النص العام بناء على التدريب على أزواج الجمل / القطاعات.تظهر النتائج التجريبية تفوق أسلوبنا المقترح في إعدادات المجال الواقعة.يتم التحقق من فائدة أسلوبنا أيضا عن مهمة ملخص متعددة المستندات.
Sentence ordering is the task of arranging a given bag of sentences so as to maximise the coherence of the overall text. In this work, we propose a simple yet effective training method that improves the capacity of models to capture overall text coherence based on training over pairs of sentences/segments. Experimental results show the superiority of our proposed method in in- and cross-domain settings. The utility of our method is also verified over a multi-document summarisation task.
المراجع المستخدمة
https://aclanthology.org/
تحقق بنية المحولات نجاحا كبيرا في مهام معالجة اللغة الطبيعية الوفيرة. إن المعلمة الزائدة لطراز المحول قد حفز الكثير من الأعمال لتخفيف حيز التنقل عن العروض المتفوقة. مع بعض الاستكشافات، نجد تقنيات بسيطة مثل التسرب، يمكن أن تعزز أداء النموذج بشكل كبير
على الرغم من التقدم الكبير في الجراحة، مازال اختيار الطريقة المناسبة لمعالجة هبوط المستقيم التام موضع جدل بالنظر لقلة حدوث الإصابة، الأمر الذي يعد سبباً لعدم وجود دراسات معشاة واسعة تؤكد تفوق طريقة على أخرى.
تسليط الضوء على عملية جراحية قلما ذكرت ف
لتدقيق متانة نماذج التعرف على الكيان المسماة (NER)، نقترح روكر، وسيلة بسيطة ولكنها فعالة لإنشاء أمثلة خصومة طبيعية. على وجه التحديد، على مستوى الكيان، نحل محل الكيانات المستهدفة مع كيانات أخرى من نفس الطبقة الدلالية في ويكيداتا؛ على مستوى السياق، نست
تعزز البيانات، التي تشير إلى معالجة المدخلات (على سبيل المثال، إضافة ضوضاء عشوائية، اخفاء أجزاء محددة) لتكبير مجموعة البيانات، تم اعتمادها على نطاق واسع في تعلم الجهاز.تعمل معظم تقنيات تكبير البيانات على إدخال واحد، مما يحد من تنوع كوربوس التدريب.في
تلعب الحساب دورا رئيسيا في فهم اللغة الطبيعية.ومع ذلك، فإن نهج NLP الحالية، وليس فقط نهج Word2VEC التقليدي أو نماذج اللغة المستندة إلى المحولات السياقية، تفشل في تعلم الحساب.ونتيجة لذلك، فإن أداء هذه النماذج محدود عند تطبيقه على التطبيقات المكثفة في