جمعنا جثة من الحوار ذات الموجهة نحو المهام البشرية البشرية الغنية بعدم الرضا وبناء نموذج يستخدم ميزات prosodic للتنبؤ عندما يكون المستخدم غير راض.بالنسبة للكلام، حصل هذا على درجة F.25 من 0.62، مقابل خط أساس 0.39.بناء على الملاحظات النوعية وتحليل الفشل، نناقش طرق محتملة لتحسين هذه النتيجة لجعلها فائدة عملية.
We collected a corpus of human-human task-oriented dialogs rich in dissatisfaction and built a model that used prosodic features to predict when the user was likely dissatisfied. For utterances this attained a F.25 score of 0.62,against a baseline of 0.39. Based on qualitative observations and failure analysis, we discuss likely ways to improve this result to make it have practical utility.
المراجع المستخدمة
https://aclanthology.org/
في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام ل
في هذه الورقة، نقول أن أنظمة الحوار قادرة على شرح قراراتها بنشاط يمكنها الاستفادة من المنطق المعني.نحن نحفز سبب هذه الاستراتيجية المناسبة ودمجها ضمن إطار مدير الحوار المؤخري الخاص بنا على أساس المنطق الخطي.على وجه الخصوص، يتيح ذلك نظام الحوار تقديم إ
منذ فترة طويلة انتهت التقييم التلقائي الموثوق لأنظمة الحوار بموجب بيئة تفاعلية. تحتاج بيئة مثالية لتقييم أنظمة الحوار، المعروفة أيضا باسم اختبار Turing، إلى إشراك التفاعل البشري، وعادة ما تكون غير متناول تجارب واسعة النطاق. على الرغم من أن الباحثين ق
أن تكون قادرا على أداء تقدير صعوبة الأسئلة بدقة (QDE) تحسين دقة تقييم الطلاب وتحسين تجربة التعلم. الأساليب التقليدية إلى QDE هي إما ذاتية أو إدخال تأخير طويل قبل أن يتم استخدام أسئلة جديدة لتقييم الطلاب. وبالتالي، اقترح العمل الأخير النهج القائم على
لكل مهمة حوار موجهة نحو تحقيق الأهداف ذات أهمية، يجب جمع كميات كبيرة من البيانات للحصول على التعلم المنتهي للنظام الحوار العصبي.جمع هذه البيانات هي عملية مكلفة وتستغرق وقتا طويلا.بدلا من ذلك، نوضح أنه يمكننا استخدام كمية صغيرة فقط من البيانات، والتي