ترغب بنشر مسار تعليمي؟ اضغط هنا

المحاصرة العودية ليست حالة محددة

Recursive prosody is not finite-state

399   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تحقق هذه الورقة في حدود القدرة الإنتاجية للعمليات الإنتاجية، من خلال التركيز على تعقيد المحاكمة العودية في سياقات التنسيق باللغة الإنجليزية (فاجنر، 2010).على الرغم من أن جميع العمليات الصوتية والعمليات الأكثر برودايا هي لغات سلسلة منتظمة حيسانية، نوضح أن المحاصيل العودية ليست كذلك.هي لغة سلسلة الإخراج هي بدلا من ذلك موازية خالية من السياق (Seki et al.، 1991).نحن نقيم تعقيد النمط على السلاسل، ثم انتقل إلى توصيف على الأشجار التي تتطلب عبواب محولات الأشجار متعددة أعلى.عند القيام بذلك، نحن نقدم أساسا للتحقيقات المحددة في المستقبل في مجال بناء جملة البياضات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الرجوع إلى النصوص التي تنقل نفس المعنى بأشكال تعبير مختلفة. أظهرت الأساليب المستندة إلى Pivot، المعروف أيضا باسم ترجمة الرحلة المستديرة، نتائج واعدة في توليد صياغة عالية الجودة. ومع ذلك، فإن الأساليب القائمة على المحور القائمة تعتمد جميعها على اللغة مثل المحور، حيث تكون النصوص الثنائية الثنائية الموازية على نطاق واسع، مطلوبة موازية عالية الجودة. في هذه الورقة، نستكشف جدوى استخدام التمثيلات الدلالية والنزاهة كحوري من أجل إعادة صياغة نصبها. بشكل ملموس، نتحول جملة إلى مجموعة متنوعة من التمثيلات الدلالية أو النحوية المختلفة (بما في ذلك AMR، UD، وتمثيل الدلالي الكامن)، ثم فك تشفير الجملة من التمثيل الدلالي. نسمح أيضا نهجا يستند إلى إعادة الاحتجاط بضغط عملية خط الأنابيب في إطار نهاية إلى نهاية. نقوم بإجراء تجارب تقارن مناهج مختلفة مع أنواع مختلفة من المحاور. تظهر النتائج التجريبية أن اتخاذ AMR كما يمكن للمحافظة الحصول على صياغة مع جودة أفضل من تناول اللغة كمحور. يمكن للإطار الطرفي النهائي أن يقلل من التحول الدلالي عند استخدام اللغة كحوري. إضافة إلى جانب ذلك، يمكن أن تولد العديد من الطرق القائمة على المحور غير المركبات أن تولد صياغة مع جودة مماثلة كنموذج التسلسل الإشراف على التسلسل، والذي يشير إلى أن البيانات الموازية للصيانة قد لا تكون ضرورية لإعادة صياغة عناصر التوليد.
يتم تدريب معظم أنظمة الترجمة الآلية المتزامنة (SIMT) وتقييمها في Offline Translation Corpora.نحن نقول أن أنظمة SIMT يجب تدريبها واختبارها على بيانات التفسير الحقيقي.لتوضيح هذه الحجة، نقترح مجموعة اختبار التفسير وإجراء تقييم واقعي ل Simt المدربة على ا لترجمات دون اتصال.نتائجنا، في الاختبار المحدد لدينا مع 3 أزواج لغة صغيرة الحجم الحالية، تسليط الضوء على الفرق من النتيجة حتى 13.83 بلو عند تقييم نماذج Simt على بيانات الترجمة الشفوية للترجمة.في غياب بيانات التدريب على الترجمة الشفوية، نقترح طريقة نقل نمط الترجمة إلى الترجمة إلى الترجمة (T2I) التي تسمح بتحويل الترجمات غير المتصلة حاليا إلى بيانات نمط الترجمة الشفوية، مما يؤدي إلى تحسن ما يصل إلى 2.8 بلو.ومع ذلك، لا تزال فجوة التقييم ملحوظة، ودعا إلى بناء تفسير واسع النطاق مناسبة بشكل أفضل لتقييم وتطوير أنظمة SIMT.
أظهرت نماذج Graph Graph الحديثة (KGE) على أساس الهندسة الزئوية إمكانات كبيرة في مساحة تضمين منخفضة الأبعاد. ومع ذلك، لا تزال ضرورة الفضاء القطعي في كوريا العليا مشكوك فيها، لأن الحساب الذي يعتمد على الهندسة الزئوية أكثر تعقيدا بكثير من عمليات Euclide an. في هذه الورقة، استنادا إلى مجموعة من طراز Hyperbolic Typerbolic، نطور اثنين من النماذج المستندة إلى Euclidean خفيفة الوزن، تسمى Rotl و Rot2L. يسبق نموذج ROTL العمليات القطعي مع الحفاظ على تأثير التطبيع المرن. الاستفادة من تحول مكدسة طبقة رواية واستنادا إلى ROTL، يحصل نموذج Rot2L على إمكانية تحسين تمثيل، ومع ذلك يكلف عددا أقل من المعلمات والحسابات من روث. تظهر التجارب على تنبؤ الارتباط أن ROT2L يحصل على الأداء الحديثة على مجموعة من مجموعات البيانات المستخدمة على نطاق واسع في مدمج الرسم البياني المعرفي منخفض الأبعاد. علاوة على ذلك، يحقق Rotl أداء مماثل ك Roth ولكن يتطلب فقط نصف وقت التدريب.
تمت دراسة Graph Basic Knowledge (SKG) (SKGE) بشكل مكثف في السنوات الماضية.في الآونة الأخيرة، ظهرت شركة الرسم البياني للمعرفة (TKG) (TKGE).في هذه الورقة، نقترح إطار عمل تضمين الحقائق الزمنية العودية (RTFE) لإجراء عمليات زراعة النماذج إلى TKGS وتعزيز أ داء نماذج TKGE الحالية لإكمال TKG.تختلف عن العمل السابق الذي يتجاهل استمرارية دول TKG في التطور الزمني، نتعامل مع تسلسل الرسوم البيانية كسلسلة ماركوف، والتي تحولات من الدولة السابقة إلى الحالة التالية.RTFE يأخذ Skge لتهيئة embedings of tkg.ثم تعقب Strefly State Tremition من TKG عن طريق تمرير المعلمات / ميزات محدثة بين الطوابع الزمنية.على وجه التحديد، في كل زمني، نقيب انتقال الدولة باعتباره عملية تحديث التدرج.نظرا لأن RTFE يتعلم كل طابع زمني متكرر، فيمكنه العبور بشكل طبيعي إلى الطوابع الزمنية المستقبلية.تجارب في خمس مجموعات بيانات TKG تظهر فعالية RTFE.
Shupamem، وهي لغة من الكاميرون الغربي، هي لغة موروثة تعرض أيضا عملية مورفو-الصوتية للإدراج الكامل.هذا يخلق تحديين لنموذج الحالة المحدودة لمورفو بناء جملة ومورفه المهبل: كيفية إدارة الإدراج الكامل والطبيعة التلقيحية لهجة المعجمية.Dolatian و Heinz (202 0) (2020) شرح كيف يمكن لمحولات محولات الحالة المحدودة الثانية اتجاهين أن تكرر كامل دون زيادة كاملة في الدول، وتم استخدام محولات محولات من الدولة المحدودة بأشرطة متعددة لنموذج مستويات التلقيح التلقائي، بما في ذلك نغمة (WIEBE، 1992؛ Dolatianو Rawski، 2020A).هنا نتهوية محولات محولات الحالة المحددة الثانية في اتجاهين ومحولات متعددة الميتاتية، مما أدى إلى شكليات محدودة للدولة التي تضم كليهما، لحساب العمليات المتربة الكاملة في Shupamem والتي تؤثر أيضا على نغمة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا