ترغب بنشر مسار تعليمي؟ اضغط هنا

إعادة النظر في إعادة صياغة البداية المستندة إلى المحورية: اللغة ليست المحور الاختياري الوحيد

Revisiting Pivot-Based Paraphrase Generation: Language Is Not the Only Optional Pivot

281   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الرجوع إلى النصوص التي تنقل نفس المعنى بأشكال تعبير مختلفة. أظهرت الأساليب المستندة إلى Pivot، المعروف أيضا باسم ترجمة الرحلة المستديرة، نتائج واعدة في توليد صياغة عالية الجودة. ومع ذلك، فإن الأساليب القائمة على المحور القائمة تعتمد جميعها على اللغة مثل المحور، حيث تكون النصوص الثنائية الثنائية الموازية على نطاق واسع، مطلوبة موازية عالية الجودة. في هذه الورقة، نستكشف جدوى استخدام التمثيلات الدلالية والنزاهة كحوري من أجل إعادة صياغة نصبها. بشكل ملموس، نتحول جملة إلى مجموعة متنوعة من التمثيلات الدلالية أو النحوية المختلفة (بما في ذلك AMR، UD، وتمثيل الدلالي الكامن)، ثم فك تشفير الجملة من التمثيل الدلالي. نسمح أيضا نهجا يستند إلى إعادة الاحتجاط بضغط عملية خط الأنابيب في إطار نهاية إلى نهاية. نقوم بإجراء تجارب تقارن مناهج مختلفة مع أنواع مختلفة من المحاور. تظهر النتائج التجريبية أن اتخاذ AMR كما يمكن للمحافظة الحصول على صياغة مع جودة أفضل من تناول اللغة كمحور. يمكن للإطار الطرفي النهائي أن يقلل من التحول الدلالي عند استخدام اللغة كحوري. إضافة إلى جانب ذلك، يمكن أن تولد العديد من الطرق القائمة على المحور غير المركبات أن تولد صياغة مع جودة مماثلة كنموذج التسلسل الإشراف على التسلسل، والذي يشير إلى أن البيانات الموازية للصيانة قد لا تكون ضرورية لإعادة صياغة عناصر التوليد.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

عملت نماذج اللغة المحددة من قبل العمود الفقري للعديد من النتائج NLP الحديثة. هذه النماذج كبيرة ومكلفة لتدريب. يشير العمل الحديث إلى أن الاحيلاء المستمر على البيانات الخاصة بمهام المهام يستحق هذا الجهد كقاولات محدبة لتحسين الأداء في مهام المصب. نستكشف بدائل لحقوق المهام ذات المستوى الشامل من النماذج اللغوية من خلال استخدام وحدات محول، ونهج فعال مع المعلمة لنقل التعلم. نجد أن محاولات محول يستند إلى تحقيق نتائج مماثلة لإحاطاء المهام المحدد أثناء استخدام جزء بسيط من المعلمات التدريبية الشاملة. نحن نستكشف بشكل مباشر عن الاستخدام المباشر للمحولات دون احتجاج ويجد أن الضبط الدقيق المباشر ينفذ في الغالب على قدم المساواة مع نماذج محول مسبقا، ومتناقض مع الفوائد المقترحة سابقا للمحاكاة المستمرة في استراتيجيات ضبط دقيقة تماما. أخيرا، نقوم بإجراء دراسة الاجتثاث حول الاحتجاج بالتكيف مع المهام للتحقيق في كيفية إجراء إعدادات مختلفة من ضغطات HyperParameter فعالية الاحتجاج.
إعادة صياغة إعادة صياغة مهمة مهمة في معالجة اللغة الطبيعية. تركز الأشغال السابقة على توليد إعادة صياغة مستوى الجملة، مع تجاهل توليد إعادة صياغة مستوى المستند، وهي مهمة أكثر تحديا وقيمة. في هذه الورقة، نستكشف مهمة إعادة صياغة نص عن طريق الوثيقة لأول م رة والتركيز على التنوع بين الجملة من خلال النظر في إعادة كتابة الجملة وإعادة ترتيبها. نقترح Corpg (توليد إعادة صياغة البحث عن النصوص الموجهة)، والتي تتمتع بالطرازات الرسم البياني Gru لتشفير الرسم البياني لعلاقة الاتساق والحصول على تمثيل مدرك التماسك لكل جملة، والتي يمكن استخدامها لإعادة ترتيب جمل الإدخال المتعددة (المحورة). نحن نقوم بإنشاء مجموعة بيانات صياغة على مستوى الوثيقة Pseudo لتدريب Corpg. تظهر نتائج التقييم التلقائي أن Corpg تفوقت على العديد من النماذج الأساسية القوية على درجات Bertscore وتنوعها. يوضح التقييم البشري أيضا أن نموذجنا يمكن أن يولد إعادة صياغة المستندات بمزيد من التنوع والحفاظ الدلالي.
يستكشف هذا العمل قدرات الترجمة الآلية العصبية القائمة على الأحرف لترجمة المحتوى الناتج عن المستخدم الصاخب (UGC) مع التركيز القوي على استكشاف حدود هذه الأساليب للتعامل مع ظواهر UGC الإنتاجية، والتي بحكم تعريفها تقريبا، لا يمكن رؤيتها في وقت التدريبوبع دضمن سيناريو صاروخي صاروخي بالرصاص، نقوم أولا بدراسة التأثير الضار على أداء الترجمة من مختلف ظواهر المحتوى التي تم إنشاؤها من قبل المستخدم على مجموعة بيانات صغيرة مشروحة، وظهرت بعد ذلك أن هذه النماذج غير قادرة بالفعل على التعامل مع الحروف غير المعروفة، مما يؤدي إلى ترجمة كارثيةالفشل بمجرد مواجهة هذه الشخصيات.نحن نؤكد مزيدا من السلوك بتجربة مهمة بسيطة ولكنها ثاقبة وتسليط الضوء على أهمية تقليل حجم المفردات Hyper-Parameter لزيادة متانة النماذج القائمة على الأحرف للترجمة الآلية.
كان التقدم المحرز الأخير في نمذجة اللغة مدفوعة ليس فقط بالتقدم في البنيات العصبية، ولكن أيضا من خلال تحسين الأجهزة والتحسين.في هذه الورقة، نؤيد نموذج اللغة الاحتمالية العصبية (NPLM) من بنغيو وآخرون.(2003)، والتي تسلسل ببساطة تضمين كلمة داخل نافذة ثاب تة ويمرر النتيجة من خلال شبكة تغذية إلى الأمام للتنبؤ بالكلمة التالية.عند القياس حتى الأجهزة الحديثة، يؤدي هذا النموذج (على الرغم من قيودها العديدة) أفضل بكثير مما كان متوقعا عن معايير نموذج اللغة على مستوى Word.يكشف تحليلنا أن NPLM يحقق حيرة أقل من محول الأساس مع سياقات مدخلات قصيرة ولكن تكافح للتعامل مع تبعيات طويلة الأجل.مستوحاة من هذه النتيجة، نقوم بتعديل المحول عن طريق استبدال طبقة انتباهي أول مع طبقة التسلسل المحلية في NPLM، مما يؤدي إلى انخفاض حيرة صغيرة ولكنها ثابتة عبر مجموعات بيانات نمذجة لغة مستوى الكلمات.
تركز هذه الورقة على إعادة صياغة إعادة صياغة النص، وهي مهمة توليد اللغة الطبيعية المدروسة على نطاق واسع في NLP.مع تطور النماذج العصبية، أظهرت أبحاث توليد إعادة صياغة التحول التدريجي إلى الأساليب العصبية في السنوات الأخيرة.وقد قدم ذلك بهيئات تمثيل سياق ي لنص المدخلات وتوليد صياغة تشبه الإنسان تشبه الإنسان بطلاقة.تقوم هذه الورقة بإجراء مناهج مختلفة لإعادة صياغة إعادة صياغة التركيز الرئيسي على الأساليب العصبية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا