تصف هذه الورقة مشاركة فريق UOB-NLP في SubTask SubTask المشترك 7A.كانت المهمة تهدف إلى اكتشاف ذكر المهن في نص وسائل التواصل الاجتماعي.جرب فريقنا بطريقتين لتحسين أداء النماذج المدربة مسبقا: على وجه التحديد، جربنا مع زيادة البيانات من خلال الترجمة ودمج المدخلات اللغوية المتعددة لتلبية هدف المهمة.في حين أن أفضل نموذج أداء في بيانات الاختبار تتألف من Mbert Tuned على البيانات المعززة باستخدام الترجمة الخلفية، فإن التحسن بسيطا ربما لأن النماذج المدربة مسبقا متعددة اللغات مثل Mbert لديها بالفعل الوصول إلى نوع المعلومات المقدمة من خلال الخلف- البيانات والبيانات ثنائية اللغة.
This paper describes the participation of the UoB-NLP team in the ProfNER-ST shared subtask 7a. The task was aimed at detecting the mention of professions in social media text. Our team experimented with two methods of improving the performance of pre-trained models: Specifically, we experimented with data augmentation through translation and the merging of multiple language inputs to meet the objective of the task. While the best performing model on the test data consisted of mBERT fine-tuned on augmented data using back-translation, the improvement is minor possibly because multi-lingual pre-trained models such as mBERT already have access to the kind of information provided through back-translation and bilingual data.
المراجع المستخدمة
https://aclanthology.org/
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب
تعزز البيانات، التي تشير إلى معالجة المدخلات (على سبيل المثال، إضافة ضوضاء عشوائية، اخفاء أجزاء محددة) لتكبير مجموعة البيانات، تم اعتمادها على نطاق واسع في تعلم الجهاز.تعمل معظم تقنيات تكبير البيانات على إدخال واحد، مما يحد من تنوع كوربوس التدريب.في
تصف هذه الورقة تقديم Lingua Custodia إلى المهمة المشتركة WMT21 على الترجمة الآلية باستخدام المصطلحات.نحن نعتبر ثلاث اتجاهات، وهي الإنجليزية إلى الفرنسية والروسية والصينية.نحن نعتمد على بنية قائمة على المحولات كمنظمة بناء، ونحن نستكشف طريقة تقدم تغيير
مؤخرا، تستخدم الترجمة الآلية العصبية على نطاق واسع لدقة الترجمة عالية، ولكن من المعروف أيضا أن تظهر أداء ضعيف في ترجمة جماعية طويلة.الى جانب ذلك، يظهر هذا الاتجاه بشكل بارز لغات الموارد المنخفضة.نحن نفترض أن هذه المشاكل ناتجة عن جمل طويلة كونها قليلة
غالبا ما يتحلل ترجمة لغة الإشارة (SLT) في التعرف على الفيديو إلى اللمعان والترجمة النصية إلى النص، حيث يكون اللمعان سلسلة من الكلمات اللغوية الموضحة باللغة المنطوقة بالترتيب الذي يتم فيه توقيعه.نحن نركز هنا على الترجمة اللامع إلى النص، والتي نعلمها ك