مؤخرا، تستخدم الترجمة الآلية العصبية على نطاق واسع لدقة الترجمة عالية، ولكن من المعروف أيضا أن تظهر أداء ضعيف في ترجمة جماعية طويلة.الى جانب ذلك، يظهر هذا الاتجاه بشكل بارز لغات الموارد المنخفضة.نحن نفترض أن هذه المشاكل ناتجة عن جمل طويلة كونها قليلة في بيانات القطار.لذلك، نقترح طريقة تكبير البيانات للتعامل مع جمل طويلة.طريقتنا بسيطة؛نحن نستخدم فقط شركة موازية معينة كبيانات تدريب وتوليد جمل طويلة من خلال تسليط جملتين.بناء على تجاربنا، نؤكد تحسينات في ترجمة جماعية طويلة من خلال تكبير البيانات المقترح على الرغم من البساطة.علاوة على ذلك، تقوم الطريقة المقترحة بتحسين جودة الترجمة أكثر عندما تقترن بالترجمة الخلفية.
Recently, neural machine translation is widely used for its high translation accuracy, but it is also known to show poor performance at long sentence translation. Besides, this tendency appears prominently for low resource languages. We assume that these problems are caused by long sentences being few in the train data. Therefore, we propose a data augmentation method for handling long sentences. Our method is simple; we only use given parallel corpora as train data and generate long sentences by concatenating two sentences. Based on our experiments, we confirm improvements in long sentence translation by proposed data augmentation despite the simplicity. Moreover, the proposed method improves translation quality more when combined with back-translation.
المراجع المستخدمة
https://aclanthology.org/
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب
تعزز البيانات، التي تشير إلى معالجة المدخلات (على سبيل المثال، إضافة ضوضاء عشوائية، اخفاء أجزاء محددة) لتكبير مجموعة البيانات، تم اعتمادها على نطاق واسع في تعلم الجهاز.تعمل معظم تقنيات تكبير البيانات على إدخال واحد، مما يحد من تنوع كوربوس التدريب.في
نلاحظ أن التطوير فقدان انتروبيا فقدان نماذج الترجمة الآلية الخاضعة للإشراف على قوانين الطاقة بمقدار بيانات التدريب وعدد المعلمات غير التضمين في النموذج.نناقش بعض الآثار العملية لهذه النتائج، مثل التنبؤ بلو الذي تحققه نماذج واسعة النطاق وتوقع عائد الا
في هذه الورقة، نحقق في عوامل القيادة وراء التسلسل، وهي طريقة بسيطة ولكنها فعالة من البيانات للترجمة الآلية العصبية منخفضة الموارد.تشير تجاربنا إلى أن سياق الخطاب غير مرجح هو سبب تحسين تسلسل بلو من قبل حوالي +1 عبر أربع أزواج لغوية.بدلا من ذلك، نوضح أ
نقدم طريقة بسيطة لتوسيع المحولات إلى الأشجار من جانب المصدر.نحن نحدد عددا من الأقنعة التي تحد من اهتمام الذات بناء على العلاقات بين العقد الشجرة، ونحن نسمح لكل انتباه في أن يتعلم أي قناع أو أقنعة لاستخدامها.عند الترجمة من الإنجليزية إلى العديد من لغا