ترغب بنشر مسار تعليمي؟ اضغط هنا

تصنيف الدلالي للمعرفة الاجتماعية للحصول على سؤال الرد على الرد

Semantic Categorization of Social Knowledge for Commonsense Question Answering

469   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أدت طرازات اللغة الكبيرة المدربة مسبقا (PLMS) إلى نجاح كبير في مهام الإجابة على الأسئلة المختلفة (QA) في أزياء نهاية إلى نهاية.ومع ذلك، تم إيلاء القليل من الاهتمام وفقا لمعرفة المعرفة المنطقية لتمييز مهام ضمان الجودة هذه.في هذا العمل، اقترحنا تصنيف الدلالات اللازمة لهذه المهام باستخدام SocialIQA كمثال.بناء على فئات المعرفة الاجتماعية الخاصة بنا المسمى DataSet على رأس SocialiQa، نربط نماذج QA العصبية لدمج فئات المعرفة الاجتماعية هذه ومعلومات العلاقة بين قاعدة المعرفة.على عكس العمل السابق، نلاحظ نماذجنا مع تصنيفات دلالية للمعرفة الاجتماعية يمكن أن تحقق أداء مماثل مع نموذج بسيط نسبيا وحجم أصغر مقارنة بالمناهج المعقدة الأخرى.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن نتعامل مع استجابة سؤال متعددة الاختيار.الحصول على معرفة المنطقية ذات الصلة بالسؤال والخيارات يسهل الاعتراف بالإجابة الصحيحة.ومع ذلك، تعاني نماذج التفكير الحالية من الضوضاء في المعرفة المستردة.في هذه الورقة، نقترح طريقة ترميز جديدة قادرة على إجراء الاعتراض والتصفية الناعمة.وهذا يساهم في حصاد وامتصاص المعلومات التمثيلية مع تدخل أقل من الضوضاء.نقوم بتجربة commonsenseqa.توضح النتائج التجريبية أن طريقتنا تعطي تحسينات كبيرة ومتسقة مقارنة بخدمات الأساس والقاعدة القائمة على روبرتا وألبرت.
حقق استنتاج اللغة الطبيعي (NLI) اهتماما كبيرا في السنوات الأخيرة؛ومع ذلك، ظل وعد تطبيق اختراقات NLI لمهام NLP الأخرى المنفذة غير الموحدة.في هذا العمل، نستخدم الفهم القروض متعدد الخيارات (MCRC) وفحص صحة واقعية لمهام التلخيص النصي (CFCS) للتحقيق في الأ سباب المحتملة لهذا.تظهر النتائج الخاصة بنا أن: (1) الطول الأقصر نسبيا في مجموعات بيانات NLI التقليدية هو التحدي الرئيسي الذي يحظر الاستخدام في تطبيقات المصب (التي تفعل أفضل مع سياقات أطول)؛(2) يمكن معالجة هذا التحدي عن طريق تحويل مجموعات بيانات فهم القراءة الغنية بالموارد إلى مجموعات بيانات NLI أطول؛و (3) تتفوق النماذج المدربة على مجموعات بيانات الفرضية المحولة والأطول الفرضية تلك المدربة باستخدام مجموعات بيانات NLI التقليدية القصيرة في مهام المصب في المقام الأول بسبب الفرق في أطوال الفرضية.
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي ة فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.
تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة ،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.
تقدم التطورات الحديثة في QA في الهواء الطلق إلى نماذج قوية تعتمد على استرجاع كثيف، ولكن ركزت فقط على استرداد المقاطع النصية.في هذا العمل، نتعامل مع QA المجال المفتوح على الجداول لأول مرة، وإظهار أنه يمكن تحسين الاسترجاع من خلال المسترد المصمم للتعامل مع سياق الجدول.نقدم إجراءات فعالة مسبقة التدريب لاستردادنا وتحسين جودة الاسترجاع مع السلبيات الصلبة الملغومة.نظرا لأن مجموعات البيانات ذات الصلة مفقودة، فإننا نستخلص مجموعة فرعية من الأسئلة الطبيعية (Kwiatkowski et al.، 2019) في مجموعة بيانات QA.نجد أن المسترد الخاص بنا يحسن نتائج الاسترجاع من 72.0 إلى 81.1 استدعاء @ 10 وتنفذ QA نهاية إلى نهاية من 33.8 إلى 37.7 مباراة دقيقة، عبر المسترد القائم على بيرت.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا