ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل التبعية العصبية القائمة على المثيل

Instance-Based Neural Dependency Parsing

232   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

المعردات التفسيرية مجردة للتوقعات النموذجية هي حاسمة في التطبيقات العملية.نحن نطور النماذج العصبية التي تمتلك عملية استنتاجية مفسضة لتحليل التبعية.تتبنى نماذجنا الاستدلال المستند إلى المثيل، حيث يتم استخراج حواف التبعية ومسمى من خلال مقارنةها بالحواف في مجموعة تدريبية.يتم استخدام حواف التدريب صراحة للتنبؤات؛وبالتالي، من السهل فهم مساهمة كل حافة إلى التنبؤات.تظهر تجاربنا أن النماذج القائمة على مثيل لدينا تحقق دقة تنافسية مع النماذج العصبية القياسية ولديها المعقول المعقولة من التفسيرات القائمة على المثيل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أدت إدخال مذكرات الكلمات المحول المستندة إلى المحولات المدربين مسبقا إلى تحسينات كبيرة في دقة المحللين المستندة إلى الرسم البياني للأطر مثل التبعيات العالمية (UD). ومع ذلك، يختلف الأمر السابق في الأبعاد المختلفة، بما في ذلك اختيارهم لنماذج اللغة المد ربة مسبقا وما إذا كانوا يستخدمون طبقات LSTM. مع تهدف إلى تحرير آثار هذه الخيارات وتحديد بنية بسيطة ولكنها قابلة للتطبيق على نطاق واسع، نقدم خطوات، ومحلل التبعية المستندة إلى الرسم البياني المعياري الجديد. باستخدام خطوات، نقوم بإجراء سلسلة من التحليلات على OD Corpora من مجموعة متنوعة من اللغات. نجد أن اختيار المدينات المدربة مسبقا له كبير تأثير على أداء المحلل وتحديد XLM-R كخيار قوي عبر اللغات في دراستنا. لا توفر إضافة طبقات LSTM أي فوائد عند استخدام Embeddings القائمة على المحولات. قد يؤدي إعداد إعدادات التدريب متعددة المهام إلى إخراج ميزات UD إضافية. أخذ هذه الأفكار معا، نقترح بنية ومحزين بسيطة ولكنها قابلة للتطبيق على نطاق واسع، وتحقيق نتائج جديدة من من من بين الفنون (من حيث LAS) لمدة 10 لغات مختلفة.
لقد أظهر العمل الحديث أن نماذج اللغة المحظورة غير المؤمنة تعلمت تمثيل مفاهيم تقلص البيانات من تباين اللغة والتي يمكن استخدامها لتحديد بيانات التدريب المستهدف بالمجال. تتوفر تسميات أنواع DataSet في كثير من الأحيان، ومع ذلك لا تزال غير مستكشفة إلى حد ك بير في الإعدادات عبر اللغات. نستفيد هذا النوع من البيانات الوصفية باعتباره إشارة إشرافية ضعيفة لتحديد البيانات المستهدف في تحليل التبعية الصفرية. على وجه التحديد، نقوم بتعيين معلومات النوع من Treebank-Level لمستوى الجملة على مستوى الجملة الدقيقة، بهدف تضخيم المعلومات المخزنة ضمنيا في تمثيلات سياقية غير مدفوعة غير المدعومة. نوضح أن هذا النوع قابل للاسترداد من المدينات السياقية متعددة اللغات وأنه يوفر إشارة فعالة لتحديد بيانات التدريب في السيناريوهات عبر اللغات والصفرية. بالنسبة إلى 12 لغة Low-Resource Treebanks، ستة منها اختبار فقط، فإن أساليبنا الخاصة النوعية تفوقها بشكل كبير خطوط الأساس التنافسية وكذلك الأساليب القائمة على التضمين الحديثة لتحديد البيانات. علاوة على ذلك، يوفر اختيار البيانات المستندة إلى النوع من النوعين نتائج جديدة من الفنادق الجديدة لمدة ثلاثة من هذه اللغات المستهدفة.
نحن نراجع ميزتين من مزيج من نماذج الخبراء (MOE) التي نسميها وتأثيرات التجميع في سياق محلل التبعية القائمة على الرسوم البيانية المستفادة في إطار احتمامي إشراف. يتوافق المتوسط ​​مع مزيج الفرقة من المحللين وهو مسؤول عن تخفيض التباين الذي يساعد على استقر ار وتحسين دقة التحليل. يصف التجميع طاقة نماذج وزارة التعليم لتعطي المزيد من الائتمان للخبراء يعتقد أنه أكثر دقة بالنظر إلى المدخلات. على الرغم من الواعدة، يصعب تحقيق ذلك، خاصة دون بيانات إضافية. نقوم بتصميم إعداد تجريبي لدراسة تأثير هذه الآثار. في حين أن المتوسط ​​مفيد دائما، فإن التجميع يتطلب تقنيات التهيئة والاستقرار جيدة، لكن مزاياها على مدى المتوسط ​​يبدو أنها تختفي في نهاية المطاف عندما يوجد عدد كاف من الخبراء. كمنتج حسب المنتج، نوضح كيف يؤدي ذلك إلى نتائج أحدث النتائج على PTB و Conll09 Treebank الصينية، مع انخفاض التباين عبر التجارب.
ركزت معظم الدراسات الحالية للاستخدام اللغوي في محتوى الوسائط الاجتماعية على الميزات اللغوية على مستوى السطح (على سبيل المثال، كلمات الوظائف وعلامات الترقيم) وجوانب المستوى الدلالي (على سبيل المثال، الموضوعات والمعنويات والعواطف) للتعليقات. لم يتم است كشاف استراتيجيات الكاتب لبناء وربط قطاعات النص على نطاق واسع على الرغم من أن هذه المعرفة من المتوقع أن تتخلص الضوء على كيفية سبب الناس في البيئات عبر الإنترنت. المساهمة في هذا الاتجاه التحليل لدراسات وسائل التواصل الاجتماعي، نبني نظام تحليل عصبي عصبي يمكن الوصول إليه علنا ​​يحلل علاقات الخطاب في تعليق عبر الإنترنت. توضح تجاربنا أن هذا النظام يحقق أداء مماثل بين جميع أنظمة التحليل العصبي العصبي. لإظهار استخدام هذه الأداة في تحليل وسائل التواصل الاجتماعي، فإننا نطبق عليه لتحديد علاقات الخطاب في تعليقات مقنعة وغير مقنعة وفحص العلاقات بين عمق شجرة الخطاب الثنائي، وعلاقات الخطاب، والإقناع المتصور للتعليقات عبر الإنترنت. يوضح عملنا إمكانية تحليل هياكل خطاب التعليقات عبر الإنترنت مع نظامنا وآثار هذه الهياكل لفهم الاتصالات عبر الإنترنت.
تصف هذه الورقة منهجية لنقل المعرفة النحوية بين لغات الموارد عالية الموارد إلى لغات الموارد المنخفضة للغاية. تتألف المنهجية في الاستفادة من نموذج الانتباه الذاتي متعدد اللغات المحدد في مجموعات البيانات الكبيرة لتطوير نموذج متعدد اللغات متعدد اللغات يم كن أن يتوقع التشريحات التبعية الشاملة لثلاثة لغات موارد منخفضة الأفريقية. تشمل التعليقات التوضيحية UD جزءا عالميا من الكلام والميزات المورفولوجية وميمرات وأشجار الاعتماد. في تجاربنا، استخدمنا تضييق كلمة متعددة اللغات وما مجموعه 11 تبعا عالميا Treebanks تم استخلاصها من ثلاثة لغات موارد عالية (الإنجليزية والفرنسية والنرويجية) وثلاثة لغات موارد منخفضة (Bambara و Wolof و Yoruba). قمنا بتطوير نماذج مختلفة لاختبار مجموعات لغة محددة تنطوي على لغات مراقبة معاصرة أو لغات ذات صلة وراثيا. تبين نتائج التجارب أن النماذج متعددة اللغات التي تنطوي على لغات عالية الموارد ولغات منخفضة الموارد مع الاتصال المعاصر بين بعضها البعض يمكن أن توفر نتائج أفضل من المجموعات التي تشمل فقط اللغات التي لا علاقة لها. فيما يتعلق بالعلاقات الوراثية البعيدة، لم نتمكن من استخلاص أي استنتاج بشأن تأثير مجموعات اللغة التي تنطوي على لغات الموارد المنخفضة المختارة، وهي Wolof و Yoruba.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا