ترغب بنشر مسار تعليمي؟ اضغط هنا

النوع كما هو ضعف الإشراف على تحليل التبعية عبر اللغات

Genre as Weak Supervision for Cross-lingual Dependency Parsing

366   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لقد أظهر العمل الحديث أن نماذج اللغة المحظورة غير المؤمنة تعلمت تمثيل مفاهيم تقلص البيانات من تباين اللغة والتي يمكن استخدامها لتحديد بيانات التدريب المستهدف بالمجال. تتوفر تسميات أنواع DataSet في كثير من الأحيان، ومع ذلك لا تزال غير مستكشفة إلى حد كبير في الإعدادات عبر اللغات. نستفيد هذا النوع من البيانات الوصفية باعتباره إشارة إشرافية ضعيفة لتحديد البيانات المستهدف في تحليل التبعية الصفرية. على وجه التحديد، نقوم بتعيين معلومات النوع من Treebank-Level لمستوى الجملة على مستوى الجملة الدقيقة، بهدف تضخيم المعلومات المخزنة ضمنيا في تمثيلات سياقية غير مدفوعة غير المدعومة. نوضح أن هذا النوع قابل للاسترداد من المدينات السياقية متعددة اللغات وأنه يوفر إشارة فعالة لتحديد بيانات التدريب في السيناريوهات عبر اللغات والصفرية. بالنسبة إلى 12 لغة Low-Resource Treebanks، ستة منها اختبار فقط، فإن أساليبنا الخاصة النوعية تفوقها بشكل كبير خطوط الأساس التنافسية وكذلك الأساليب القائمة على التضمين الحديثة لتحديد البيانات. علاوة على ذلك، يوفر اختيار البيانات المستندة إلى النوع من النوعين نتائج جديدة من الفنادق الجديدة لمدة ثلاثة من هذه اللغات المستهدفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتخلص يدويا على بنك Treebank هو تستغرق وقتا طويلا وكثيفة العمالة. نحن نقوم بإجراء تجارب تحليل التبعية عبر اللغات المتبادلة، حيث نربع المحلل المحلل على لغة واحدة واختبار لغتهم المستهدفة. كحالة الاختبار الخاصة بنا، نستخدم Xibe، لغة تجميل أقل من الموارد . نفترض أن اختيار لغة مرتبطة ارتباطا وثيقا لأن لغة المصدر ستوفر نتائج أفضل من الأقارب البعيدين. ومع ذلك، ليس من الواضح كيفية تحديد تلك اللغات ذات الصلة عن كثب. نحن نحقق في ثلاث طرق مختلفة: اختيار الأقرب من اللغة النموذجية، باستخدام Langrank، واختيار اللغة الأكثر مماثلة تعتمد على الحيرة. نقوم بتدريب نماذج تحليل اللغات المحددة باستخدام udify واختبار على أنواع مختلفة من بيانات Xibe. تظهر النتائج أن اللغات المختارة بناء على التصنيفات وعشرات الحيرة تتفوق على تلك المتوقعة من قبل Langrank؛ اليابانية هي لغة المصدر المثلى. عند تحديد لغة المصدر، فإن القرب من اللغة المستهدفة هو أكثر أهمية من أحجام التدريب الكبيرة. يتأثر التحليل أيضا بخلافات النوع، لكنها لها تأثير ضئيل طالما أن البيانات التدريبية على الأقل معقدة مثل الهدف.
تتطلب شبكات العصبية العميقة الحديثة من بين الفن بيانات تدريبية ذات صلة واسعة النطاق غالبا ما تكون مكلفة للحصول على أو غير متوفرة للعديد من المهام. لقد ثبت أن الإشراف ضعيف في شكل قواعد خاصة بالمجال مفيدا في مثل هذه الإعدادات لإنشاء بيانات التدريب المس مى ضعيف. ومع ذلك، فإن التعلم مع القواعد الضعيفة يتحدى بسبب طبيعته المهمة والصاخبة المتأصلة. تحدي إضافي هو تغطية القاعدة والتداخل، حيث يعتبر العمل المسبق على الإشراف الضعيف فقط الحالات التي تغطيها قواعد ضعيفة، وبالتالي تاركة بيانات قيمة غير مسفدة وراءها. في هذا العمل، نطور إطارا ضعيفا للإشراف (Astra) الذي يرفع جميع البيانات المتاحة لمهمة معينة. تحقيقا لهذه الغاية، نستفيد البيانات الخاصة بمهارات العمل من خلال التدريب الذاتي مع نموذج (الطالب) الذي يعتبر تمثيلات السياق ويتوقع التسميات الزائفة على الحالات التي قد لا تغطيها قواعد ضعيفة. ونحن نضع كذلك شبكة انتباه القاعدة (المعلم) التي تتعلم كيفية إجمالي الملصقات الزائفة الطلابية مع ملصقات القاعدة الضعيفة، مشروطة بإخلاصها والسياق الأساسي للمثيل. أخيرا، نقوم بإنشاء هدف تعليمي شبه إشراف للتدريب المنتهي بالبيانات غير المستمرة والقواعد الخاصة بالمجال، وكمية صغيرة من البيانات المسمى. توضح تجارب واسعة على ستة مجموعات بيانات قياسية لتصنيف النص فعالية نهجنا مع تحسينات كبيرة على خطوط الأساس الحديثة.
على الرغم من أن التطورات الأخيرة في الهندسة العصبية والتمثيلات المدربة مسبقا قد زادت بشكل كبير من الأداء النموذجي للحدث على وضع العلامات الدلالية الخاضعة للإشراف بالكامل (SRL)، فإن المهمة تظل تحديا لغات حيث تكون بيانات تدريب SRL الإشرافية غير وفيرة.ي مكن للتعلم عبر اللغات تحسين الأداء في هذا الإعداد عن طريق نقل المعرفة من لغات الموارد عالية الموارد إلى الموارد المنخفضة.علاوة على ذلك، فإننا نفترض أن شرطية التبعيات النحوية يمكن أن يتم الاستفادة منها لتسهيل نقل عبر اللغات.في هذا العمل، نقوم بإجراء عملية استكشاف تجريبي لمساعدة الإشراف النحوي عن Crosslingual SRL ضمن مخطط تعليمي بسيط متعدد الأيتاح.مع التقييمات الشاملة عبر عشرة لغات (بالإضافة إلى اللغة الإنجليزية) وثلاثة بيانات معيار SRL، بما في ذلك SRL على حد سواء SRL المستندة إلى التبعية والمقرها، فإننا نعرض فعالية الإشراف النحامي في سيناريوهات منخفضة الموارد.
في تحليل التمثيل المعني المتبادل التجريدي (AMR)، يقوم الباحثون بتطوير النماذج التي تمارس طرزها من لغات مختلفة على الأمراض الأمريكية لالتقاط هياكلها الدلالية الأساسية: بالنظر إلى عقوبة بأي لغة، نهدف إلى التقاط المحتوى الدلالي الأساسي من خلال المفاهيم المتصلةأنواع متعددة من العلاقات الدلالية.الأساليب عادة ما تصل إلى بيانات التدريب الفضي الكبيرة لتعلم نموذج واحد قادر على مشروع الجمل غير الإنجليزية إلى AMRS.ومع ذلك، نجد أن خط الأساس البسيط يميل إلى التغاضي عنه: ترجمة الجمل إلى الإنجليزية وتستعرض AMR الخاص بهم مع محلل عمرو أحادي (ترجمة + تحليل، T + P).في هذه الورقة، نؤيد هذا الخط الأساسي البسيط من خطوتين، وتعزيزه بنظام NMT قوي ومحلل عمرو قوي.تظهر تجاربنا أن T + P يتفوق على نظام أحدث حديثة في جميع اللغات التي تم اختبارها: الألمانية والإيطالية والإسبانية وماندرين مع +14.6 و +12.6 و +14.3 ونقاط Smatch
المعردات التفسيرية مجردة للتوقعات النموذجية هي حاسمة في التطبيقات العملية.نحن نطور النماذج العصبية التي تمتلك عملية استنتاجية مفسضة لتحليل التبعية.تتبنى نماذجنا الاستدلال المستند إلى المثيل، حيث يتم استخراج حواف التبعية ومسمى من خلال مقارنةها بالحواف في مجموعة تدريبية.يتم استخدام حواف التدريب صراحة للتنبؤات؛وبالتالي، من السهل فهم مساهمة كل حافة إلى التنبؤات.تظهر تجاربنا أن النماذج القائمة على مثيل لدينا تحقق دقة تنافسية مع النماذج العصبية القياسية ولديها المعقول المعقولة من التفسيرات القائمة على المثيل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا