ترغب بنشر مسار تعليمي؟ اضغط هنا

التكبير

Iterative Paraphrastic Augmentation with Discriminative Span Alignment

358   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

مجردة، نقدم استراتيجية تكبير الشلل الرنين على أساس إعادة الصياغة المعردة على مستوى العقوبة ومحاذاة الإحصاء التمييزي.يسمح نهجنا للتوسع على نطاق واسع في مجموعات البيانات الحالية أو الإبداع السريع لمجموعات البيانات الجديدة باستخدام كوربس صغير المنتج يدويا.نوضح نهجنا مع تجارب في مشروع بيركلي فرامينيت، وهي لغة تفهم لغة واسعة النطاق تمتد أكثر من عقدين من العمل البشري.مع أربعة أيام من جمع البيانات التدريبية لنموذج محاذاة تمتد ويوم واحد من حساب متوازي، فإننا نقوم تلقائيا بإنشاء وإطلاق سراح المجتمع 495،300 فريد من فريد من 495300 (الإطار، الزناد) في سياقات حكومية متنوعة، وهو توسع تقريبا 50 أضعاف فوق Framenet V1.7.يتم تقييم مجموعة البيانات الناتجة بشكل جوهري ومن خارجي بالتفصيل، وإظهار نتائج إيجابية على مهمة المصب.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم استكشاف نقل النمط على نطاق واسع في توليد اللغة الطبيعية مع استخراج Corpus غير الموازي بشكل مباشر أو غير مباشر فكرة من النمط من مصدر المجال المصدر والمستهدف. يعد القصور المشترك للنهج القائمة شرط التعليقات التوضيحية المشتركة في جميع الأبعاد الأسلوبي ة قيد النظر. يوفر توفر مجموعة البيانات هذه عبر مزيج من الأساليب من امتداد هذه الإعدادات إلى أبعاد أسلوب متعددة. في حين أن النماذج المتتالية الأبعاد المتتالية عبر أنماط متعددة هي احتمال، فإنه يعاني من خسارة المحتوى، خاصة عندما لا تكون أبعاد النمط مستقلة تماما عن بعضها البعض. في عملنا، نترخى هذا الشرط للبيانات المشروح بشكل مشترك عبر أنماط متعددة باستخدام البيانات المكتسبة بشكل مستقل عبر أبعاد نمط مختلفة دون أي شروح إضافية. نقوم بتهيئة إعداد برنامج فك تشفير التشفير مع طراز اللغة المستندة إلى المحول المدرب مسبقا على كائن عام وتعزيز قدرته على إعادة كتابة الأبعاد ذات الأرقام المستهدفة المتعددة عن طريق توظيف نماذج لغة واضحة على الطراز كتمييز. من خلال التقييم الكمي والنوعي، نعرض قدرة نموذجنا على التحكم في الأساليب عبر أبعاد أسلوب متعددة مع الحفاظ على محتوى نص الإدخال. قارنناها مع خطوط الأساس التي تنطوي على نماذج نقل أسلوب UNI-VIDELAL لحكام أحادي الأبعاد.
تعظيم البيانات غير المزعجة (UDA) هي تقنية شبه بيئية تنطبق على فقدان الاتساق لمعاقبة الاختلافات بين تنبؤات النماذج على (أ) أمثلة ملحوظة (غير مسفحة)؛ و (ب) الأمثلة الواضحة المقابلة التي تم إنتاجها عبر تكبير البيانات. في حين أن UDA اكتسبت شعبية لتصنيف ا لنصوص، فإن الأسئلة المفتوحة باقية من قرارات التصميم ضرورية وكيفية تمديد الطريقة لتسلسل مهام وضع العلامات. في هذه الورقة، نعيد فحص UDA وإظهار فعاليتها في العديد من المهام المتسلسلة. مساهمتنا الرئيسية هي دراسة تجريبية ل UDA لتأسيس مكونات الخوارزمية التي تمنح استحقاقات NLP. وخاصة، على الرغم من أن العمل السابق قد أكد على استخدام تقنيات تكبير ذكية بما في ذلك الترجمة ذات الترجمة المرجانية، نجد أن التناسق بين التنبؤات المخصصة للكلمات الملحوظة والمستبدلة غالبا ما تسفر عن فوائد قابلة للمقارنة (أو أكبر) مقارنة بنماذج الاضطرابات الأكثر تعقيدا. علاوة على ذلك، نجد أن تطبيق فقدان اتساق UDA يوفر مكاسب ذات مغزى دون أي بيانات غير قابلة للتحقيق على الإطلاق، أي في إعداد قياسي إشرافي. باختصار، لا تحتاج UDA إلى عدم إدراكها لتحقيق الكثير من فوائدها المذكورة، ولا تتطلب تكبير بيانات معقدة لتكون فعالة.
نقترح هندسة محول الرسم البياني المتكرر للرسوم البيانية التلقائي (Rngtr) من أجل تحسين الرسوم البيانية التعسفية من خلال التطبيق العسكري لمحول الرسم البياني غير التلقائي إلى الرسم البياني وتطبيقه على تحليل التبعية النحوية.نوضح قوة وفعالية Rngtr على العد يد من شركات التبعية، باستخدام نموذج التقييم المدرب مسبقا مع بيرت.نقدم أيضا محولات محول النحوية (Sytr)، وهي محلل غير متكرر مشابهة لنموذج التقييم الخاص بنا.يمكن Rngtr تحسين دقة مجموعة متنوعة من المحللين الأوليين في 13 لغة من التبعيات الشاملة TreeBanks والإنجليزية والصينية Benn Treebanks، والجوربوس الألماني Conll2009، وحتى تحسين النتائج الجديدة على النتائج الجديدة التي حققتها Systr، بشكل كبيرتحسين أحدث حديثة لجميع الشركات التي تم اختبارها.
وقد مكن التحول إلى النماذج العصبية في إحالة الجيل التعبير (REG) المزيد من النماذج الطبيعية، ولكن بتكلفة الترجمة الترجمة الشفوية.نجاد بأن دمج المنطق العملي في استنتاج نماذج التوليد غير المرجعية للسياق يمكن أن يتجاوز سمات REG التقليدية والعملية، لأن هذ ا يوفر فصل بين المعلومات المستقلة والمعلومات الحرفية والتكيف العملي إلى السياق.مع وضع ذلك في الاعتبار، نطبق استراتيجيات فك تشفيرها الحالية من التسمية التوضيحية للصورة التمييزية إلى REG وتقييمها من حيث المعلوماتية العملية، والاحتمالية في التعليقات التوضيحية حول الحقيقة والتنوع اللغوي.تظهر نتائجنا فعالية عامة، ولكن مكاسب صغيرة نسبيا في المعلوماتية، مما أثار أسئلة مهمة ل Reg بشكل عام.
قياس درجة التشابه بين زوج من الجمل بلغات مختلفة هو المطلوبة الأساسية لأساليب تضمين الجملة متعددة اللغات. يتكون التنبؤ بدرجة التشابه من مهمتين فرعيتين، وهو تقييم التغلب غير المباشر واسترجاع الجملة متعددة اللغات. ومع ذلك، فإن الأساليب التقليدية قد تناو لت أساسا واحدة فقط من المهام الفرعية، وبالتالي أظهرت عروضا متحيزا. في هذه الورقة، نقترح طريقة جديدة وطريقة قوية لتضمين الجملة متعددة اللغات، مما يدل على تحسين الأداء على كلا المهام الفرعية، وبالتالي مما يؤدي إلى تنبؤات قوية لدرجات التشابه متعددة اللغات. تتكون الطريقة المقترحة من جزأين: لتعلم التشابه الدلالي من الجمل في اللغة المحورية، ثم تمديد الهيكل الدلالي المستفاد لغات مختلفة. لمحاذاة الهياكل الدلالية عبر لغات مختلفة، نقدم شبكة مدرس وطالب. تقطير شبكة المعلم معرفة اللغة المحورية لغات مختلفة من شبكة الطلاب. أثناء التقطير، يتم تحديث معلمات شبكة المعلم مع المتوسط ​​البطيء المتحرك. جنبا إلى جنب مع التقطير وتحديث المعلمة، يمكن محاذاة الهيكل الدلالي لشبكة الطالب مباشرة عبر لغات مختلفة مع الحفاظ على القدرة على قياس التشابه الدلالي. وبالتالي، فإن طريقة التدريب متعددة اللغات تدفع تحسين الأداء في تقييم التشابه متعدد اللغات. يحقق النموذج المقترح أداء الحديث في تقييم التشابه متعدد اللغات لعام 2017 بالإضافة إلى مهام فرعية، التي تمتد التقييم المتشابهات لأول مرة 2017 و Tatoeba متعددة اللغات متعددة اللغات في 14 لغة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا