ترغب بنشر مسار تعليمي؟ اضغط هنا

مشاركة NLPHUT في WAT2021

NLPHut's Participation at WAT2021

115   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توفر هذه الورقة وصف المهام المشتركة مع WAT 2021 من قبل فريق NLPHUT الخاص بنا ".لقد شاركنا في اللغة الإنجليزية → Hindi Multimodal مهمة الترجمة، الإنجليزية → مهمة ترجمة Malayalam Multimodal، ومهمة الترجمة متعددة اللغات.لقد استخدمنا طراز المحولات الحديثة مع علامات اللغة في إعدادات مختلفة لمهمة الترجمة واقترح نهج تواتر التسمية التوضيحية الخاص بالمنطقة الرواية باستخدام مزيج من صورة CNN و LSTM للحصول على تقسيم الصور الهندية والمالياالاميةوبعدقمم التقديم لدينا باللغة الإنجليزية → Malayalam مهمة ترجمة متعددة الوسائط (ترجمة نصية فقط، ومالياالام التسمية التوضيحية)، وتحتل المرتبة الثانية في اللغة الإنجليزية → Hindi Multimodal Tasony Task (ترجمة النص فقط، والتسمية التوضيحية الهندية).كما أجرت عمليات التقديمات لدينا بشكل جيد في مهام الترجمة متعددة اللغات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة أن الأنظمة المقدمة إلى المهمة المشتركة Wat 2021 Multiindicmt بواسطة فريق IITP-MT.نحن نقدم اثنين من أنظمة الترجمة الآلية العصبية متعددة اللغات (NMT) (Inster-to-English والإنجليزية إلى MEDER).ننهي جميع بيانات MED وتخلق المفردات الفرعية ا لتي يتم مشاركتها بين جميع لغات ISS.نحن نستخدم نهج الترجمة الخلفي لتوليد البيانات الاصطناعية التي يتم إلحاقها بالتوازي Corpus وتستخدم لتدريب نماذجنا.يتم تقييم النماذج باستخدام درجات Bleu و Libes و AMFM مع نموذج MEDER-To-To-English يحقق 40.08 Bleu للزوج الهندي والإنجليزي ونموذج اللغة الإنجليزية إلى MERS لتحقيق 34.48 بلو للزوج باللغة الإنجليزية الهندية.ومع ذلك، نلاحظ أن مفردات الكلمة الفرعية المشتركة لا تساعد النموذج الإنجليزي إلى التروس في وقت الجيل، مما أدى إلى إنتاج ترجمات ذات نوعية رديئة للتاميل والتيلجو وميلايالام إلى أزواج باللغة الإنجليزية مع درجة بلو 8.51 و 6.25 و 3.79على التوالى.
نقدم نظام TMEKU الخاص بنا المقدم إلى مهمة الترجمة متعددة الوسائط الإنجليزية اليابانية ل WAT 2021. شاركنا في مهمة Flickr30Kent-JP ومهمة MSCOCO MSCOCO MSCOCON تحت الحالة المقيدة باستخدام مجموعات البيانات المقدمة رسميا.توظف نظامنا المقترح محاذاة ناعمة م ن Word-Region للترجمة الآلية العصبية متعددة الوسائط (MNMT).تظهر النتائج التجريبية التي تم تقييمها على متري بلو المقدمة من موقع تقييم WAT 2021 أن نظام TMEKU حقق أفضل أداء بين جميع الأنظمة المشاركة.يوضح تحليل آخر دراسة الحالة أن الاستفادة من محاذاة منطقة الكلمات بين الطرائق النصية والمرئية هي مفتاح تعزيز الأداء في نظام TMEKU الخاص بنا، مما يؤدي إلى استخدام معلومات مرئية أفضل.
تقدم هذه الورقة عملنا في مهمة تقدير الجودة WMT 2021 (QE).لقد شاركنا في جميع المهام الفرعية الثلاثة، بما في ذلك مهمة التقييم المباشر على مستوى الجملة، والكلمة ومهمة جهود جهود ما بعد التحرير للكلمة وحكم الجملة ومهمة الكشف عن الأخطاء الحرجة، في جميع أزو اج اللغات.تستخدم أنظمتنا إطار النبة المقدرة، بشكل ملموس باستخدام XLM-Roberta مدربة مسبقا كقسم مؤشر ومجموعة من المهام أو التراجع كمقيم.بالنسبة لجميع المهام، نحسن أنظمتنا من خلال دمج الجملة بعد التعديل أو جملة ترجمة إضافية عالية الجودة في طريقة التعلم المتعدد أو ترميزها مع التنبؤ مباشرة.علاوة على ذلك، في وضع صفري بالرصاص، فإن استراتيجية تكبير البيانات الخاصة بنا تعتمد على تراجع مونت كارلو يجلب تحسنا كبيرا في مهمة DA Sub.والجدير بالذكر أن عروضنا تحقق نتائج ملحوظة على جميع المهام.
في هذه الورقة، نبلغ عن النتائج التجريبية لنماذج الترجمة الآلية التي أجرتها فريق Nectec لمهام ترجمة WAT-2021. أساسا، تستند نماذجنا إلى الأساليب العصبية لكلا اتجاهين أزواج اللغة الإنجليزية ميانمار وميانمار الإنجليزية. تركز معظم نماذج الترجمة العصبية ال حالية (NMT) بشكل أساسي على تحويل البيانات المتسلسلة ولا تستخدم المعلومات الأساسية مباشرة. ومع ذلك، فإننا نقوم بإجراء نماذج الترجمة الآلية المتعددة المصدر (NMT) باستخدام Corpora متعددة اللغات مثل Corpus State Data Corpus أو Corpus Data Data Corpus، أو Corpus Data Data Pos-Deagged. الترجمة متعددة المصادر هي نهج لاستغلال مدخلات متعددة (على سبيل المثال بتنسيقتين مختلفتين) لزيادة دقة الترجمة. تم تنفيذ نموذج ترميز التشفير القائم على RNN مع آلية الاهتمام وبنية المحولات لتجرينا. أظهرت النتائج التجريبية أن النماذج المقترحة من الهندسة المعمارية القائمة على RNN تتفوق على نموذج خط الأساس لمهمة الترجمة الإنجليزية إلى ميانمار، ونماذج المحولات متعددة المصدر والمشتركة متعددة المصدر تحقق نتائج ترجمة أفضل من الأساس.
تصف هذه الورقة تقديم Lingua Custodia إلى المهمة المشتركة WMT21 على الترجمة الآلية باستخدام المصطلحات.نحن نعتبر ثلاث اتجاهات، وهي الإنجليزية إلى الفرنسية والروسية والصينية.نحن نعتمد على بنية قائمة على المحولات كمنظمة بناء، ونحن نستكشف طريقة تقدم تغيير تين رئيسيتين على الإجراء القياسي للتعامل مع المصطلحات.أول واحد يتكون في زيادة البيانات التدريبية بطريقة تشجيع النموذج لتعلم سلوك النسخ عند مواجهة مصطلحات قواعد المصطلحات.التغيير الثاني هو عبيد موضعي اخفاء، والغرض منه هو تخفيف التعلم سلوك النسخ وتحسين تعميم النموذج.تظهر النتائج التجريبية أن طريقتنا تلبي معظم قيود المصطلين مع الحفاظ على جودة الترجمة عالية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا