ترغب بنشر مسار تعليمي؟ اضغط هنا

Token-Wise مناهج التعلم الترجمة الآلية العصبية

Token-wise Curriculum Learning for Neural Machine Translation

390   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تتطلب أساليب التعلم المنهج الحالية للترجمة الآلية العصبية (NMT) أخذ العينات مبالغ كافية من العينات "من بيانات التدريب في مرحلة التدريب المبكر. هذا غير قابل للتحقيق دائما لغات الموارد المنخفضة حيث تكون كمية البيانات التدريبية محدودة. لمعالجة مثل هذا القيد، نقترح نقه نهج تعليمي مناهج رواية حكيمة ينشئ كميات كافية من العينات السهلة. على وجه التحديد، يتعلم النموذج التنبؤ بتسلسل فرعي قصير من الجزء التالي من كل جملة مستهدفة في المرحلة المبكرة للتدريب. ثم يتم توسيع التسلسل الفرعي تدريجيا مع تقدم التدريب. مثل هذا التصميم المناهج الدراسي الجديد مستوحى من التأثير التراكمي لأخطاء الترجمة، مما يجعل الرموز الأخيرة أكثر تحديا للتنبؤ أكثر من البداية. تبين تجارب واسعة أن نهجنا يمكن أن تتفوق باستمرار على الأساس على خمسة أزواج لغات، خاصة لغات الموارد المنخفضة. يجمع بين نهجنا مع طرق مستوى الجملة يحسن أداء لغات الموارد العالية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد اللغات - والتي تساعد على تحسين أداء الترجمة بالاقتران مع التقنيات الحالية مثل الضبط الدقيق.بالإضافة إلى ذلك، نحاول تعلم منهجا من المناهج الدراسية من MNMT من الصفر بالاشتراك مع تدريب نظام الترجمة باستخدام قطاع الطرق متعددة الذراع السياقية.نعرض على مجموعة بيانات الترجمة المنخفضة من Flores التي يمكن أن توفر هذه المناهج المستفادة نقاطا أفضل للضبط وتحسين الأداء العام لنظام الترجمة.
أصبحت الترجمة المرجودة (BT) واحدة من مكونات الأمر الواقع في الترجمة الآلية العصبية غير المنشأة (UNMT)، ويجعل صراحة لديها القدرة على الترجمة. ومع ذلك، يتم التعامل مع جميع النصوص الثنائية الزائفة التي تم إنشاؤها بواسطة BT بنفس القدر كبيانات نظيفة أثناء التحسين دون النظر في تنوع الجودة، مما يؤدي إلى التقارب البطيء وأداء الترجمة المحدود. لمعالجة هذه المشكلة، نقترح طريقة تعلم المناهج الدراسية للاستفادة تدريجيا من النصوص الثنائية الزائفة القائمة على جودتها من التعبيات المتعددة. على وجه التحديد، نقوم أولا بتطبيق تضمين كلمة crosslingual لحساب صعوبة الترجمة المحتملة (الجودة) للجمل الأولية. بعد ذلك، يتم تغذية الجمل في برنامج التعريف الخاص ب UNMT من السهل إلى الدفعة الصلبة عن طريق الدفعة. علاوة على ذلك، بالنظر إلى جودة الجمل / الرموز في دفعة معينة هي متنوعة أيضا، فإننا نتخذ النموذج نفسه لحساب درجات الجودة المحبوبة بشكل جيد، والتي يتم تقديمها كعامل تعليمي لموازنة مساهمات أجزاء مختلفة عند فقد الحوسبة وتشجيعها نموذج UNMT للتركيز على البيانات الزائفة بجودة أعلى. النتائج التجريبية على WMT 14 EN-FR، WMT 14 EN-DE، WMT 16 EN-RO، و LDC EN-ZH توضح أن الطريقة المقترحة تحقق تحسينات ثابتة مع سرعة التقارب الأسرع.
حاليا، تتلقى الترجمة متعددة اللغات الآلية أكثر اهتماما أكثر وأكثر لأنها تجلب أداء أفضل لغات الموارد المنخفضة (LRLS) وتوفر مساحة أكبر. ومع ذلك، فإن نماذج الترجمة متعددة اللغات الحالية تواجه تحديا شديدا: عدم التوازن. نتيجة لذلك، فإن أداء الترجمة من لغا ت مختلفة في نماذج الترجمة متعددة اللغات مختلفة تماما. نقول أن مشكلة الاختلال هذه تنبع من كفاءات التعليم المختلفة لغات مختلفة. لذلك، نحن نركز على تحقيق التوازن بين الكفاءات التعليمية لغات مختلفة واقتراح مناهج التعلم القائم على الكفاءة للترجمة الآلية متعددة اللغات، والتي تسمى CCL-M. على وجه التحديد، نقوم أولا بتحديد كفاءتين للمساعدة في جدولة لغات الموارد العالية (HRLS) ولغات المورد المنخفضة: 1) الكفاءة التي تم تقييمها ذاتيا، وتقييم مدى تعلم اللغة نفسها؛ 2) الكفاءة التي تم تقييمها HRLS، وتقييم ما إذا كانت LRL جاهزة للتعلم وفقا لخلاف HRLS الذي تم تقييمه الذاتي. استنادا إلى الكفاءات المذكورة أعلاه، نستخدم خوارزمية CCL-M المقترحة إضافة لغات جديدة تدريجيا في التدريب المحدد بطريقة تعلم المناهج الدراسية. علاوة على ذلك، نقترح استراتيجية أخذان رصاصة ديناميكية متوازنة من الكفاءة النووية لتحسين عينات التدريب بشكل أفضل في التدريب متعدد اللغات. تظهر النتائج التجريبية أن نهجنا حقق مكاسب أداء ثابتة وهامة مقارنة بالنهج السابق للدولة السابقة بشأن مجموعة بيانات محادثات تيد.
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
في التعلم الخاضع للإشراف، يجب أن يكون نموذج مدرب جيدا قادرا على استعادة الحقيقة الأرضية بدقة، أي التسميات المتوقعة من المتوقع أن تشبه تسميات الحقيقة الأرضية قدر الإمكان.مستوحاة من ذلك، فإننا صياغة معيارا صعوبة بناء على درجات الاسترداد من أمثلة التدري ب.بدافع من الحدس أنه بعد القشط من خلال كوربوس التدريب، يعرف طراز الترجمة الآلية العصبية (NMT) "كيفية جدولة منهج مناسب وفقا لتعلم صعوبة التعلم، نقترح استراتيجية تعلم المناهج الدراسية الموجهة ذاتيا تشجع نموذج NMT للتعلممن سهولة الصعب على أساس درجات الاسترداد.على وجه التحديد، نعتمد درجة بلو على مستوى الجملة باعتبارها وكيل درجة الاسترداد.النتائج التجريبية على معايير الترجمة بما في ذلك WMT14 الإنجليزية والألمانية و WMT17 الصينية - الإنجليزية إظهار أن طريقتنا المقترحة تعمل بشكل كبير على تحسين درجة الاسترداد، وبالتالي تحسين أداء الترجمة باستمرار.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا