التطبيع المعجمي هو مهمة تحويل الكلام في شكلها الموحد. هذه المهمة مفيدة لتحليل المصب، لأنها توفر طريقة للتنسيق (غالبا ما تكون عفوية) تباين لغوي. مثل هذا الاختلاف هو نموذجي للوسائط الاجتماعية التي تتم مشاركة المعلومات في العديد من الطرق، بما في ذلك اللغات المختلفة وتحويل التعليمات البرمجية. منذ عمل Han و Baldwin (2011) منذ عقد من الزمان، اجتذبت التطبيع المعجمي الانتباه باللغة الإنجليزية وعلا بلغات أخرى. ومع ذلك، هناك نقص في وجود معيار مشترك للمقارنة بين النظم عبر اللغات مع إعداد بيانات وتقييم متجانسة. تحدد المهمة المشتركة متعددة الأكسجين لملء هذه الفجوة. نحن نقدم أكبر مؤشر تطبيع متعدد اللغات المتوفرة للجمهور بما في ذلك 13 متغيرات لغة. نقترح إعداد تقييم متجانس مع كل من التقييم الجوهري والخارجي. كما التقييم الخارجي، نستخدم تحليل التبعية ووضع علامات على جزء من مقاييس التقييم القضائية (A-LAS، A-UAS، و A-POS) لحساب التناقضات المحاذاة. جذبت المهمة المشتركة التي استضافتها في W-Nut 2021 9 مشاركا و 18 رسالة. تظهر النتائج أن أنظمة التطبيع العصبي تتفوق على النظام السابق على النظام السابق بهامش كبير. يتأثر أداء وضع العلامات على وضع العلامات في المصب وعلامات جزء من الكلام بشكل إيجابي ولكن بدرجات متفاوتة، مع تحسينات تصل إلى 1.72 A-LAS و 0.85 A-UAS و 1.54 A-POS للنظام الفائز.
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.
المراجع المستخدمة
https://aclanthology.org/
نقدم الدخول الفائز إلى مهمة مشتركة من التطبيع المعجمي متعدد اللغات (Multilexnorm) في W-Nut 2021 (Van Der Goot et al.، 2021A)، والتي تقيم أنظمة التطبيع المعجمي في 12 مجموعة بيانات وسائل التواصل الاجتماعي في 11 لغة.نقوم بتأسيس حلنا على نموذج لغة بايت م
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال
من الصعب معالجة وسائل التواصل الاجتماعي لأدوات معالجة اللغة الطبيعية القائمة، بسبب الأخطاء الإملائية، والكلمات غير القياسية، والتقصاصات، والرسملة غير القياسية وعلامات الترقيم.إحدى الطرق للتحايل على هذه المشكلات هي تطبيع بيانات الإدخال قبل المعالجة.رك
تصف هذه الورقة التقديمات HEL-LJU إلى المهمة المشتركة متعددة الأبعاد على التطبيع المعجمي متعدد اللغات.يعتمد نظامنا على خطوة مسبقة تصنيف صفقة Bert Token، حيث يتم توقع كل رمزي نوع التحول الضروري (لا شيء، أحرف كبيرة، صغيرة، كاستفغل، تعديل)، وخطوة SMT على
تصف هذه الورقة التقديم من قبل الفريق من قسم اللغويات الحاسوبية، جامعة زيوريخ، إلى مهمة تحويل Grapheme-To-PhoneMe متعددة اللغات 1 من تحدي Sigmorphon 2021 في الإعدادات المنخفضة والمتوسطة. التقديم هو اختلاف في نظامنا 2020 G2P، الذي يعمل كأساس لتحدي هذا