ترغب بنشر مسار تعليمي؟ اضغط هنا

"شيء شيء هوتا هاي!" نهج قابل للتفسير نحو تحليل المعنويات على البيانات المزدجة التعليمية الهندي

``Something Something Hota Hai!'' An Explainable Approach towards Sentiment Analysis on Indian Code-Mixed Data

347   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أدى الاستخدام المتزايد لمواقع وسائل التواصل الاجتماعي في بلدان مثل الهند إلى مجلدات كبيرة من البيانات المختلطة.يمكن أن يوفر تحليل المعنويات لهذه البيانات رؤى غير متكاملة في وجهات نظر الناس والآراء.غالبا ما تكون البيانات المختلطة من التعليمات البرمجية صاخبة في الطبيعة بسبب تهجئة متعددة لنفس الكلمة، ونقص ترتيب واضح للكلمات في جملة، واختصرات عشوائية.وبالتالي، فإن العمل مع البيانات المختلطة من التعليمات البرمجية أكثر تحديا من بيانات أحادية الأونلينغ.تفسير التنبؤات النموذجية تتيح لنا تحديد متانة النموذج ضد أشكال مختلفة من الضوضاء.في هذه الورقة، نقترح منهجية لإدماج النهج القابلة للتفسير في تحليل المعنويات المختلطة من التعليمات البرمجية.من خلال تفسير تنبؤات نماذج تحليل المعنويات، نقيم مدى جودة النموذج قادر على التكيف مع الضوضاء الضمنية الموجودة في البيانات المختلطة التعليمات البرمجية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تلعب اللغة المختلطة من التعليمات البرمجية دورا حاسما في الاتصالات في المجتمعات متعددة اللغات. على الرغم من أن النمو الأخير لمستخدمي الويب قد عززوا إلى حد كبير استخدام مثل هذه اللغات المختلطة، فإن الجيل الحالي لأنظمة الحوار مونولجة في المقام الأول. هذ ه الزيادة في استخدام اللغة المختلطة من التعليمات البرمجية قد دفعت أنظمة الحوار بلغة مماثلة. نقدم عملنا في توليد الحوار المختلط من التعليمات البرمجية، وهي مهمة غير مستكشفة في اللغات المختلطة من التعليمات البرمجية، وتوليد الكلام في اللغة المختلطة من التعليمات البرمجية بدلا من لغة واحدة في كثير من الأحيان الإنجليزية فقط. نقدم لجنة اصطناعية جديدة في مزيج التعليمات البرمجية للحوائط، CM-DAYAYDIALOG، عن طريق تحويل كوربوس حوار موجود باللغة الإنجليزية فقط إلى Corpus مختلطة باللغة الهندية. بعد ذلك اقترحنا نهجا أساسيا حيث نظهر فعالية استخدام MBART مثل محولات تسلسل تسلسل متعدد اللغات لتوليد الحوار المختلط. يمكن لأفضل طرازات الحوار الأداء لدينا إجراء محادثات متماسكة في اللغة المختلطة الهندية - الإنجليزية كما تم تقييمها بواسطة المقاييس البشرية والآلية التي تحدد معايير جديدة لمهمة توليد الحوار المختلط من التعليمات البرمجية.
يهدف تحليل المعنويات إلى اكتشاف المشاعر الإجمالية، أي قطبية أو قطبية جملة أو فقرة أو نصية، دون النظر في الكيانات المذكورة وجوانبها. يهدف تحليل المعنويات القائم على الجانب إلى استخراج جوانب الكيانات المستهدفة المعينة مشاعرهم. يعمل بشكل مسبق على صياغة هذه المشكلة بمثابة مشكلة في العلامات أو حل هذه المهمة باستخدام إطار المستخلص المستخرج ثم يستند إلى الفحص حيث يتم استخراج كل أهداف الرأي الأولى من الجملة، ثم بمساعدة تمثيل تمثيل، يتم تصنيف الأهداف على أنها إيجابية، سلبية، أو محايدة. تعاني مشكلة وضع العلامات على التسلسل من مشكلات مثل عدم تناسق المعنويات ومساحة البحث الهائل. في حين أن إطار المستخلصات المستخلصات القائم على الفستان يعاني من قضايا مثل تغطية نصف كلمة وإيواء متداخلة. للتغلب على هذا، نقترح إطار عمل مستخلص مستخلص مقرا له على أساسه مع رواية ومثبتة محسنة. تجارب في مجموعات البيانات القياسية الثلاثة (Restaurant14، Laptop14، Restaurant15) تظهر نموذجنا يتفوق باستمرار على الحالة الحالية من بين الفن. علاوة على ذلك، نقدم أيضا مراجعات أفلام مختلفة للإشراف على مجموعة بيانات (Movie20) ومراجعات فيلم Pseudo-Latceed DataSet (Movieslarge) صراحة لهذه المهمة والإبلاغ عن النتائج على مجموعة بيانات Movie20 الجديدة أيضا.
في الآونة الأخيرة، يركز غالبية الباحثين تحليل المعنويات على تحليل المعنويات المستندة إلى الهدف لأنه يوفر تحليلا متعمقا بنتائج أكثر دقة بالمقارنة مع تحليل المعنويات التقليدية.في هذه الورقة، نقترح نهجا تعليميا تفاعليا لمعالجة مهمة تحليل المعنويات المست ندة إلى الهدف للغة العربية.يستخدم نموذج IA-LSTM المقترح آلية تفاعلية تعتمد على الانتباه لإجبار النموذج على التركيز على أجزاء مختلفة (أهداف) من الجملة.نحن نبحث في القدرة على استخدام الأهداف والحق الأيمن والأيسر، ونموذجها بشكل منفصل لتعلم تمثيلاتهم الخاصة عبر النمذجة التفاعلية.قمنا بتقييم نموذجنا على مجموعة بيانات مختلفة: مراجعة الفنادق العربية ومجموعات بيانات مراجعة الكتاب العربية.توضح النتائج فعالية استخدام هذه التقنية النمذجة التفاعلية للمهمة القائمة على الأهداف العربية.حصلت النموذج على قيم دقة 83.10 مقارنة بنماذج Sota مثل AB-LSTM-PC والتي حصلت على 82.60 لنفس مجموعة البيانات.
تقدم هذه الورقة المهمة المشتركة 2021 على تحليل المشاعر الأبعاد للنصوص التعليمية التي تسعى إلى تحديد درجة المعنويات ذات القيمة الحقيقية لتعليقات التقييم الذاتي كتبها الطلاب الصينيين في كل من التكافؤ والأبعاد الإثراية.يمثل Valence درجة المشاعر اللطيفة وغير السارة (أو الإيجابية والسلبية)، وتمثل الإثريات درجة الإثارة والهدوء.من بين 7 فرق مسجلة لهذه المهمة المشتركة لتحليل المعنويات ثنائي الأبعاد، 6 نتائج مقدمة.نتوقع أن تنتج حملة التقييم هذه تقنيات تحليل المعنويات الأبعاد أكثر تقدما للمجال التعليمي.يتم إجراء جميع مجموعات البيانات مع معايير الذهب وتسجيل البرنامج النصي متاحا للباحثين.
كل من قضايا أوجه القصور في البيانات والاتساق الدلالي مهم لتعزيز البيانات.معظم الطرق السابقة تعالج القضية الأولى، ولكن تجاهل المرحلة الثانية.في حالات تحليل المعنويات المستندة إلى جانب الجسيم، قد يغير انتهاك القضايا المذكورة أعلاه قطبية الجانب والمشاعر .في هذه الورقة، نقترح نهج تكبير بيانات الحفاظ على دلالات - من خلال النظر في أهمية كل كلمة في تسلسل نصي وفقا للجوانب والمشاعر ذات الصلة.ثم نحل محل الرموز غير المهتمات مع استراتيجيتين استبدال دون تغيير قطبية مستوى الجانب.يتم تقييم نهجنا على العديد من مجموعات بيانات تحليل المعنويات المتاحة للجمهور وسيناريوهات التنبؤ في مجال الأسهم / المخاطر في العالم الحقيقي.تظهر النتائج التجريبية أن منهجيةنا تحقق أداء أفضل في جميع مجموعات البيانات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا