ترغب بنشر مسار تعليمي؟ اضغط هنا

Backward Causation and the EPR Paradox

55   0   0.0 ( 0 )
 نشر من قبل William R. Wharton
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Backward causation in which future events affect the past is formalized in a way consistent with Special Relativity and shown to restore locality to nonrelativistic quantum mechanics. It can explain the correlations of the EPR paradox without using hidden variables. It also restores time-symmetry to microphysics. Quantum Mechanics has the right properties to allow for backward causation. The new model is probably untestable experimentally but it has profound philosophical implications concerning reality.

قيم البحث

اقرأ أيضاً

88 - A. Tartaglia 1998
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.
We give a conceptually simple proof of nonlocality using only the perfect correlations between results of measurements on distant systems discussed by Einstein, Podolsky and Rosen---correlations that EPR thought proved the incompleteness of quantum m echanics. Our argument relies on an extension of EPR by Schrodinger.
Contextuality is a key feature of quantum mechanics that provides an important non-classical resource for quantum information and computation. Abramsky and Brandenburger used sheaf theory to give a general treatment of contextuality in quantum theory [New Journal of Physics 13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example database theory. In this paper, we shall develop this unified view of contextuality. We provide two main contributions: firstly, we expose a remarkable connection between contexuality and logical paradoxes; secondly, we show that an important class of contextuality arguments has a topological origin. More specifically, we show that All-vs-Nothing proofs of contextuality are witnessed by cohomological obstructions.
Using a process-theoretic formalism, we introduce the notion of a causal-inferential theory: a triple consisting of a theory of causal influences, a theory of inferences (of both the Boolean and Bayesian varieties), and a specification of how these i nteract. Recasting the notions of operational and realist theories in this mold clarifies what a realist account of an experiment offers beyond an operational account. It also yields a novel characterization of the assumptions and implications of standard no-go theorems for realist representations of operational quantum theory, namely, those based on Bells notion of locality and those based on generalized noncontextuality. Moreover, our process-theoretic characterization of generalised noncontextuality is shown to be implied by an even more natural principle which we term Leibnizianity. Most strikingly, our framework offers a way forward in a research program that seeks to circumvent these no-go results. Specifically, we argue that if one can identify axioms for a realist causal-inferential theory such that the notions of causation and inference can differ from their conventional (classical) interpretations, then one has the means of defining an intrinsically quantum notion of realism, and thereby a realist representation of operational quantum theory that salvages the spirit of locality and of noncontextuality.
87 - Andrei Khrennikov 2008
We show that the projection postulate plays a crucial role in the discussion on the so called quantum nonlocality, in particular in the EPR-argument. We stress that the original von Neumann projection postulate was crucially modified by extending it to observables with degenerate spectra (the Luders postulate) and we show that this modification is highly questionable from a physical point of view, and it is the real source of quantum nonlocality. The use of the original von Neumann postulate eliminates this problem: instead of action at the distance-nonlocality, we obtain a classical measurement nonlocality. It seems that EPR did mistake in their 1935-paper: if one uses correctly von Neumann projection postulate, no ``elements of reality can be assigned to entangled systems. Our analysis of the EPR and projection postulate makes clearer Bohrs considerations in his reply to Einstein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا