ﻻ يوجد ملخص باللغة العربية
Contextuality is a key feature of quantum mechanics that provides an important non-classical resource for quantum information and computation. Abramsky and Brandenburger used sheaf theory to give a general treatment of contextuality in quantum theory [New Journal of Physics 13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example database theory. In this paper, we shall develop this unified view of contextuality. We provide two main contributions: firstly, we expose a remarkable connection between contexuality and logical paradoxes; secondly, we show that an important class of contextuality arguments has a topological origin. More specifically, we show that All-vs-Nothing proofs of contextuality are witnessed by cohomological obstructions.
This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a s
In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea
Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable s
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this