ﻻ يوجد ملخص باللغة العربية
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.
Backward causation in which future events affect the past is formalized in a way consistent with Special Relativity and shown to restore locality to nonrelativistic quantum mechanics. It can explain the correlations of the EPR paradox without using h
What is the momentum spectrum of a particle moving in an infinite deep square well? Einstein, Pauli and Yukawa had adopted different point of view than that in usual text books. The theoretical and experimental implication of this problem is discussed.
We give a conceptually simple proof of nonlocality using only the perfect correlations between results of measurements on distant systems discussed by Einstein, Podolsky and Rosen---correlations that EPR thought proved the incompleteness of quantum m
Here we present the most general framework for $n$-particle Hardys paradoxes, which include Hardys original one and Cerecedas extension as special cases. Remarkably, for any $nge 3$ we demonstrate that there always exist generalized paradoxes (with t
We uncover a new quantum paradox, where a simple question about two identical quantum systems reveals unsettlingly paradoxical answers when weak measurements are considered. Our resolution of the paradox, from within the weak measurement framework, a