ﻻ يوجد ملخص باللغة العربية
We uncover a new quantum paradox, where a simple question about two identical quantum systems reveals unsettlingly paradoxical answers when weak measurements are considered. Our resolution of the paradox, from within the weak measurement framework, amounts to a proof of counterfactuality for our generalised protocol (2014)---the first to do so---for sending an unknown qubit without any particles travelling between the communicating parties, i.e. counterfactually. The paradox and its resolution are reproduced from a consistent-histories viewpoint. We go on to propose a novel, experimentally feasible implementation of this counterfactual disembodied transport that we call counterportation, based on cavity quantum electrodynamics, estimating resources for beating the no-cloning fidelity limit---except that unlike teleportation no previously-shared entanglement nor classical communication are required. Our approach is up to several orders of magnitude more efficient in terms of physical resources than previously proposed techniques and is remarkably tolerant to device imperfections. Surprisingly, while counterfactual communication is intuitively explained in terms of interaction-free measurement and the Zeno effect, we show based on our proposed scheme that neither is necessary, with implications in support of an underlying physical reality.
The classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an ignorant observer, who cannot dis
This Colloquium examines the field of the EPR Gedankenexperiment, from the original paper of Einstein, Podolsky and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discre
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this
We experimentally demonstrate that when three single photons transmit through two polarization channels, in a well-defined pre- and postselected ensemble, there are no two photons in the same polarization channel by weak-strength measurement, a count
A quantum walker moves on the integers with four extra degrees of freedom, performing a coin-shift operation to alter its internal state and position at discrete units of time. The time evolution is described by a unitary process. We focus on finding