ﻻ يوجد ملخص باللغة العربية
For a massive spin 1/2 field, we present the reduced spin and helicity density matrix, respectively, for the same pure one particle state. Their relation has also been developed. Furthermore, we calculate and compare the corresponding entanglement entropy for spin and helicity within the same inertial reference frame. Due to the distinct dependence on momentum degree of freedom between spin and helicity states, the resultant helicity entropy is different from that of spin in general. In particular, we find that both helicity entanglement for a spin eigenstate and spin entanglement for a right handed or left handed helicity state do not vanish and their Von Neumann entropy has no dependence on the specific form of momentum distribution as long as it is isotropic.
Lorentz transformation of the reduced helicity density matrix for a massive spin 1/2 particle is investigated in the framework of relativistic quantum information theory for the first time. The corresponding helicity entropy is calculated, which show
We investigate the Lorentz transformation of the reduced helicity density matrix for a pair of massive spin 1/2 particles. The corresponding Wootters concurrence shows no invariant meaning, which implies that we can generate helicity entanglement sim
We introduce a family of inhomogeneous XX spin chains whose squared couplings are a polynomial of degree at most four in the site index. We show how to obtain an asymptotic approximation for the Renyi entanglement entropy of all such chains in a cons
We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total qua
We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a