ﻻ يوجد ملخص باللغة العربية
Lorentz transformation of the reduced helicity density matrix for a massive spin 1/2 particle is investigated in the framework of relativistic quantum information theory for the first time. The corresponding helicity entropy is calculated, which shows no invariant meaning as that of spin. The variation of the helicity entropy with the relative speed of motion of inertial observers, however, differs significantly from that of spin due to their distinct transformation behaviors under the action of Lorentz group. This novel and odd behavior unique to the helicity may be readily detected by high energy physics experiments. The underlying physical explanations are also discussed.
We investigate the Lorentz transformation of the reduced helicity density matrix for a pair of massive spin 1/2 particles. The corresponding Wootters concurrence shows no invariant meaning, which implies that we can generate helicity entanglement sim
For a massive spin 1/2 field, we present the reduced spin and helicity density matrix, respectively, for the same pure one particle state. Their relation has also been developed. Furthermore, we calculate and compare the corresponding entanglement en
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative err
We implement a general imaging method by measuring the complex degree of coherence using linear optics and photon number resolving detectors. In the absence of collective or entanglement assisted measurements, our method is optimal over a large range
It has been recognized for some time that even for perfect conductors, the interaction Casimir entropy, due to quantum/thermal fluctuations, can be negative. This result was not considered problematic because it was thought that the self-entropies of