ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity Entanglement of Moving Bodies

106   0   0.0 ( 0 )
 نشر من قبل Hongbao Zhang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the Lorentz transformation of the reduced helicity density matrix for a pair of massive spin 1/2 particles. The corresponding Wootters concurrence shows no invariant meaning, which implies that we can generate helicity entanglement simply by the transformation from one reference frame to another. The difference between the helicity and spin case is also discussed.



قيم البحث

اقرأ أيضاً

67 - Song He , Shuxin Shao , 2007
Lorentz transformation of the reduced helicity density matrix for a massive spin 1/2 particle is investigated in the framework of relativistic quantum information theory for the first time. The corresponding helicity entropy is calculated, which show s no invariant meaning as that of spin. The variation of the helicity entropy with the relative speed of motion of inertial observers, however, differs significantly from that of spin due to their distinct transformation behaviors under the action of Lorentz group. This novel and odd behavior unique to the helicity may be readily detected by high energy physics experiments. The underlying physical explanations are also discussed.
We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.
71 - Andrea Russo 2021
This work is originally a Cambridge Part III essay paper. Quantum complexity arises as an alternative measure to the Fubini metric between two quantum states. Given two states and a set of allowed gates, it is defined as the least complex unitary ope rator capable of transforming one state into the other. Starting with K qubits evolving through a k-local Hamiltonian, it is possible to draw an analogy between the quantum system and an auxiliary classical system. Using the definition of complexity to define a metric for the classical system, it is possible to relate its entropy with the quantum complexity of the K qubits, defining the Second Law of Quantum Complexity. The law states that, if it is not already saturated, the quantum complexity of a system will increase with an overwhelming probability towards its maximum value. In the context of AdS/CFT duality and the ER=EPR conjecture, the growth of the volume of the Einstein Rosen bridge interior is proportional to the quantum complexity of the instantaneous state of the conformal field theory. Therefore, the interior of the wormhole connecting two entangled CFT will grow as a natural consequence of the complexification of the boundary state.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa y that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple correlation measurements between two spins: one embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence of non-zero off-diagonal terms in the coherent state basis of the gravitational field modes.
We propose a covariant scheme for measuring entanglement on general hypersurfaces in relativistic quantum field theory. For that, we introduce an auxiliary relativistic field, the discretizer, that by locally interacting with the field along a hypers urface, fully swaps the fields and discretizers states. It is shown, that the discretizer can be used to effectively cut-off the fields infinities, in a covariant fashion, and without having to introduce a spatial lattice. This, in turn, provides us an efficient way to evaluate entanglement between arbitrary regions on any hypersurface. As examples, we study the entanglement between complementary and separated regions in 1+1 dimensions, for flat hypersurfaces in Minkowski space, for curved hypersurfaces in Milne space, and for regions on hypersurfaces approaching null-surfaces. Our results show that the entanglement between regions on arbitrary hypersurfaces in 1+1 dimensions depends only on the space-time endpoints of the regions, and not on the shape of the interior. Our results corroborate and extend previous results for flat hypersurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا