ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement entropy of inhomogeneous XX spin chains with algebraic interactions

110   0   0.0 ( 0 )
 نشر من قبل Artemio Gonzalez-Lopez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a family of inhomogeneous XX spin chains whose squared couplings are a polynomial of degree at most four in the site index. We show how to obtain an asymptotic approximation for the Renyi entanglement entropy of all such chains in a constant magnetic field at half filling by exploiting their connection with the conformal field theory of a massless Dirac fermion in a suitably curved static background. We study the above approximation for three particular chains in the family, two of them related to well-known quasi-exactly solvable quantum models on the line and the third one to classical Krawtchouk polynomials, finding an excellent agreement with the exact value obtained numerically when the Renyi parameter $alpha$ is less than one. When $alphage1$ we find parity oscillations, as expected from the homogeneous case, and show that they are very accurately reproduced by a modification of the Fagotti-Calabrese formula. We have also analyzed the asymptotic behavior of the Renyi entanglement entropy in the non-standard situation of arbitrary filling and/or inhomogeneous magnetic field. Our numerical results show that in this case a block of spins at each end of the chain becomes disentangled from the rest. Moreover, the asymptotic approximation for the case of half filling and constant magnetic field, when suitably rescaled to the region of non-vanishing entropy, provides a rough approximation to the entanglement entropy also in this general case.



قيم البحث

اقرأ أيضاً

We establish a direct connection between inhomogeneous XX spin chains (or free fermion systems with nearest-neighbors hopping) and certain QES models on the line giving rise to a family of weakly orthogonal polynomials. We classify all such models an d their associated XX chains, which include two families related to the Lame (finite gap) quantum potential on the line. For one of these chains, we numerically compute the Renyi bipartite entanglement entropy at half filling and derive an asymptotic approximation thereof by studying the models continuous limit, which turns out to describe a massless Dirac fermion on a suitably curved background. We show that the leading behavior of the entropy is that of a $c=1$ critical system, although there is a subleading $log(log N)$ correction (where $N$ is the number of sites) unusual in this type of models.
We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R{e}nyi entropy which equally allows for extraction of the central charge.
We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulati ons, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.
84 - Bowen Shi , Isaac H. Kim 2020
We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total qua ntum dimension of a set of superselection sectors localized on the domain wall. This expression is derived from the recently proposed entanglement bootstrap method.
We study the momentum space entanglement spectra of bosonic and fermionic formulations of the spin-1/2 XXZ chain with analytical methods and exact diagonalization. We investigate the behavior of the entanglement gaps, present in both partitions, acro ss quantum phase transitions in the XXZ chain. In both cases, finite size scaling reveals that the entanglement gap closure does not occur at the physical transition points. For bosons, we find that the entanglement gap observed in [Thomale et al., Phys. Rev. Lett. 105, 116805 (2010)] depends on the scaling dimension of the conformal field theory as varied by the XXZ anisotropy. For fermions, the infinite entanglement gap present at the XX point persists well past the phase transition at the Heisenberg point. We elaborate on how these shifted transition points in the entanglement spectra may in fact support the numerical study of physical transitions in the momentum space density matrix renormalization group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا