ﻻ يوجد ملخص باللغة العربية
A simple model of quantum particle is proposed in which the particle in a {it macroscopic} rest frame is represented by a {it microscopic d}-dimensional oscillator, {it s=(d-1)/2} being the spin of the particle. The state vectors are defined simply by complex combinations of coordinates and momenta. It is argued that the observables of the system are Hermitian forms (corresponding uniquely to Hermitian matrices). Quantum measurements transforms the equilibrium state obtained after preparation into a family of equilibrium states corresponding to the critical values of the measured observable appearing as values of a random quantity associated with the observable. Our main assumptions state that: i) in the process of measurement the measured observable tends to minimum, and ii) the mean value of every random quantity associated with an observable in some state is proportional to the value of the corresponding observable at the same state. This allows to obtain in a very simple manner the Born rule.
For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. T
In addition to the well-known Landauer-Buttiker scattering theory and the nonequilibrium Greens function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the
The LSND and MiniBoone seeming anomalies in neutrino oscillations are usually attributed to physics beyond the Standard model. It is, however, possible that they may be an artefact of the theoretical treatment of particle oscillations that ignores fi
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive infor