ﻻ يوجد ملخص باللغة العربية
The LSND and MiniBoone seeming anomalies in neutrino oscillations are usually attributed to physics beyond the Standard model. It is, however, possible that they may be an artefact of the theoretical treatment of particle oscillations that ignores fine points of quantum measurement theory relevant to the experiments. In this paper, we construct a rigorous measurement-theoretic framework for the description of particle oscillations, employing no assumptions extrinsic to quantum theory. The formalism leads to a non-standard oscillation formula; at low energy it predicts an `anomalous oscillation wavelength, while at high energy it differs from the standard expression by a factor of 2. The key novelties in the formalism are the treatment of a particles time of arrival at the detector as a genuine quantum observable, the theoretical precision in the definition of quantum probabilities, and the detailed modeling of the measurement process. The article also contains an extensive critical review of existing theoretical treatments of particle oscillations, identifying key problems and showing that these are overcome by the proposed formalism.
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains
The phenomena of particle mixing and flavor oscillations in elementary particle physics can be addressed by the point of view of quantum information theory, and described in terms of multi-mode entanglement of single-particle states. In this paper we
A simple model of quantum particle is proposed in which the particle in a {it macroscopic} rest frame is represented by a {it microscopic d}-dimensional oscillator, {it s=(d-1)/2} being the spin of the particle. The state vectors are defined simply b
For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. T
In addition to the well-known Landauer-Buttiker scattering theory and the nonequilibrium Greens function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the