ﻻ يوجد ملخص باللغة العربية
Using the concept of crossing state and the formalism of second quantization, we propose a prescription for computing the density of arrivals of particles for multiparticle states, both in the free and the interacting case. The densities thus computed are positive, covariant in time for time independent hamiltonians, normalized to the total number of arrivals, and related to the flux. We investigate the behaviour of this prescriptions for bosons and fermions, finding boson enhancement and fermion depletion of arrivals.
For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. T
We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first ph
Relaxation and correlation times are two parameters used frequently in approximate descriptions of the time development of hadronizing system from some initial state towards distributions observed experimentally. Chosen to reproduce the experimental
We propose a new method to directly measure a general multi-particle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is
Via the proper-time eigenstates (event states) instead of the proper-mass eigenstates (particle states), free-motion time-of-arrival theory for massive spin-1/2 particles is developed at the level of quantum field theory. The approach is based on a p