ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of low pressure VPE GaAs diodes before and after 24 GeV/c proton irradiation

88   0   0.0 ( 0 )
 نشر من قبل Nick Brook HEP Glasgow
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GaAs Schottky diode detectors have been fabricated upon Low Pressure Vapour Phase Epitaxial GaAs. The devices were characterised before and after a $1.25 times 10^{14}$~cm$^{-2}$ 24GeV/c proton fluence. The as fabricated Ti-GaAs barrier height was measured, via two electrical methods, to be $0.81pm0.005$ and $0.85pm0.01$~eV and a space charge density of $2.8 pm 0.2 times 10^{14}$~cm$^{-3}$ was determined. The current was greater than that expected for an ideal barrier with the excess attributed to generation current from the bulk. The charge collection efficiency, determined from front alpha illumination and 60 keV gamma irradiation, was inexcess of 95% at 50V reverse bias. After irradiation the reverse current, measured for a bias of 200V at 20$^{o}$~C, increased from 90~nA to 1500~nA due to radiation induced generation centres. Deep levels were showed to be present using capacitance techniques. The charge collection of the device determined from front alpha illumination fell to $32pm5$% at a reverse bias of 200V.



قيم البحث

اقرأ أيضاً

71 - I. Zoi , A. Ebrahimi , F. Feindt 2021
Pixelated silicon detectors are state-of-the-art technology to achieve precise tracking and vertexing at collider experiments, designed to accurately measure the hit position of incoming particles in high rate and radiation environments. The detector requirements become extremely demanding for operation at the High-Luminosity LHC, where up to 200 interactions will overlap in the same bunch crossing on top of the process of interest. Additionally, fluences up to 2.3 10^16 cm^-2 1 MeV neutron equivalent at 3.0 cm distance from the beam are expected for an integrated luminosity of 3000 fb^-1. In the last decades, the pixel pitch has constantly been reduced to cope with the experiments needs of achieving higher position resolution and maintaining low pixel occupancy per channel. The spatial resolution improves with a decreased pixel size but it degrades with radiation damage. Therefore, prototype sensor modules for the upgrade of the experiments at the HL-LHC need to be tested after being irradiated. This paper describes position resolution measurements on planar prototype sensors with 100x25 um^2 pixels for the CMS Phase-2 Upgrade. It reviews the dependence of the position resolution on the relative inclination angle between the incoming particle trajectory and the sensor, the charge threshold applied by the readout chip, and the bias voltage. A precision setup with three parallel planes of sensors has been used to investigate the performance of sensors irradiated to fluences up to F_eq = 3.6 10^15 cm-2. The measurements were performed with a 5 GeV electron beam. A spatial resolution of 3.2 +- 0.1 um is found for non-irradiated sensors, at the optimal angle for charge sharing. The resolution is 5.0 +/- 0.2 um for a proton-irradiated sensor at F_eq = 2.1 10^15 cm-2 and a neutron-irradiated sensor at F_eq = 3.6 10^15 cm^-2.
This paper reports on the characterisation with Transient Current Technique measurements of the charge collection and depletion depth of a radiation-hard high-voltage CMOS pixel sensor produced at ams AG. Several substrate resistivities were tested b efore and after proton irradiation with two different sources: the 24 GeV Proton Synchrotron at CERN and the 16.7 MeV Cyclotron at Bern Inselspital.
146 - Yuhang Tan , Tao Yang , Suyu Xiao 2020
We study the radiation effects of the Low Gain Avalanche Detector (LGAD) sensors developed by the Institute of High Energy Physics (IHEP) and the Novel Device Laboratory (NDL) of Beijing Normal University in China. These new sensors have been irradia ted at the China Institute of Atomic Energy (CIAE) using 100 MeV proton beam with five different fluences from 7$times10^{14}$ $n_{eq}/cm^2$ up to 4.5$times10^{15}$ $n_{eq}/cm^2$. The result shows the effective doping concentration in the gain layer decreases with the increase of irradiation fluence, as expected by the acceptor removal mechanism. By comparing data and model gives the acceptor removal coefficient $c_{A}$ = $(6.07pm0.70)times10^{-16}~cm^2$, which indicates the NDL sensor has fairly good radiation resistance.
The properties of 60-{mu}m thick Ultra-Fast Silicon Detectors (UFSD) detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were tested before and after irradiation with minimum ionizing particles (MIPs) from a 90Sr b{eta}-source . This FBK production, called UFSD2, has UFSDs with gain layer made of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated. The irradiation with neutrons took place at the TRIGA reactor in Ljubljana, while the proton irradiation took place at CERN SPS. The sensors were exposed to a neutron fluence of 4*10e14, 8*1014, 1.5*10e15, 3*10e15, 6*10e15 neq/cm2 and to a proton fluence of 9.6*10e14 p/cm2, equivalent to a fluence of 6*10e14 neq/cm2. The internal gain and the timing resolution were measured as a function of bias voltage at -20C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both.
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolu tions. LGADs with an active thickness of about 45 $mu$m were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to $10^{15}$ n$_{eq}$/cm$^2$. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of $3times10^{14}$ n$_{eq}$/cm$^2$, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At $10^{15}$ n$_{eq}$/cm$^2$, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا