ﻻ يوجد ملخص باللغة العربية
The properties of 60-{mu}m thick Ultra-Fast Silicon Detectors (UFSD) detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were tested before and after irradiation with minimum ionizing particles (MIPs) from a 90Sr b{eta}-source . This FBK production, called UFSD2, has UFSDs with gain layer made of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated. The irradiation with neutrons took place at the TRIGA reactor in Ljubljana, while the proton irradiation took place at CERN SPS. The sensors were exposed to a neutron fluence of 4*10e14, 8*1014, 1.5*10e15, 3*10e15, 6*10e15 neq/cm2 and to a proton fluence of 9.6*10e14 p/cm2, equivalent to a fluence of 6*10e14 neq/cm2. The internal gain and the timing resolution were measured as a function of bias voltage at -20C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both.
We report results from the testing of 35 {mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {mu}m thick UFSD produced by HPK. The 35 {mu}m
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity
Results obtained with 3D columnar pixel sensors bump-bonded to the RD53A prototype readout chip are reported. The interconnected modules have been tested in a hadron beam before and after irradiation to a fluence of about $1times$$10^{16}$neq cm$^{-2
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolu
The performances of Low Gain Avalanche diode (LGAD) sensors from a neutron irradiation campaign with fluences of 0.8 x 10^15, 15 x 10^15 and 2.5 x 10^15 neq/cm2 are reported in this article. These LGAD sensors are developed by the Institute of High E