ترغب بنشر مسار تعليمي؟ اضغط هنا

Position resolution with 25 um pitch pixel sensors before and after irradiation

72   0   0.0 ( 0 )
 نشر من قبل Erika Garutti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pixelated silicon detectors are state-of-the-art technology to achieve precise tracking and vertexing at collider experiments, designed to accurately measure the hit position of incoming particles in high rate and radiation environments. The detector requirements become extremely demanding for operation at the High-Luminosity LHC, where up to 200 interactions will overlap in the same bunch crossing on top of the process of interest. Additionally, fluences up to 2.3 10^16 cm^-2 1 MeV neutron equivalent at 3.0 cm distance from the beam are expected for an integrated luminosity of 3000 fb^-1. In the last decades, the pixel pitch has constantly been reduced to cope with the experiments needs of achieving higher position resolution and maintaining low pixel occupancy per channel. The spatial resolution improves with a decreased pixel size but it degrades with radiation damage. Therefore, prototype sensor modules for the upgrade of the experiments at the HL-LHC need to be tested after being irradiated. This paper describes position resolution measurements on planar prototype sensors with 100x25 um^2 pixels for the CMS Phase-2 Upgrade. It reviews the dependence of the position resolution on the relative inclination angle between the incoming particle trajectory and the sensor, the charge threshold applied by the readout chip, and the bias voltage. A precision setup with three parallel planes of sensors has been used to investigate the performance of sensors irradiated to fluences up to F_eq = 3.6 10^15 cm-2. The measurements were performed with a 5 GeV electron beam. A spatial resolution of 3.2 +- 0.1 um is found for non-irradiated sensors, at the optimal angle for charge sharing. The resolution is 5.0 +/- 0.2 um for a proton-irradiated sensor at F_eq = 2.1 10^15 cm-2 and a neutron-irradiated sensor at F_eq = 3.6 10^15 cm^-2.

قيم البحث

اقرأ أيضاً

We report on measurements performed on silicon pixel sensor prototypes exposed to a 200 MeV proton beam at the Indiana University Cyclotron Facility. The sensors are of n+/n/p+ type with multi-guard ring structures on the p+-side and p-stop electrode isolation on the n+-side. Electrical characterization of the devices was performed before and after irradiation up to a proton fluence of 4E14 p/cm2. We tested pixel sensors fabricated from normal and oxygen-enriched silicon wafers and with two different p-stop isolation layouts: common p-stop and individual p-stop.
In June 2008 single-sided silicon strip sensors with 50 $mu$m readout pitch were tested in a highly energetic pion beam at the SPS at CERN. The purpose of the test was to evaluate characteristic detector properties by varying the strip width and the number of intermediate strips. The experimental setup and first results for the spatial resolution are discussed.
The innermost part of the tracking detector of the ATLAS experiment consists mainly of planar n$^+$-in-n silicon pixel sensors. During the phase-0 upgrade, the Insertable B-Layer (IBL) was installed closest to the beam pipe. Its pixels are arranged w ith a pitch of $250,mu$m$,times,50,mu$m with a rectangular shaped n$^+$ implantation. Based on this design modified pixel designs have been developed in Dortmund. Six of these new pixel designs are arranged in structures of ten columns and were placed beside structures with the standard design on one sensor. Because of a special guard ring design, each structure can be powered and investigated separately. Several of these sensors were bump bonded to FE-I4 read-out chips. One of these modules was irradiated with reactor neutrons up to a fluence of $5 times 10^{15} , n_{text{eq}}text{cm}^{-2}$. This contribution presents important sensor characteristics, charge collection determined with radioactive sources and hit efficiency measurements, performed in laboratory and test beam, of this irradiated device. It is shown that the new modified designs perform similar or better than the IBL standard design in terms of charge collection and tracking efficiency, at the cost of a slightly increased leakage current.
280 - Mengzhao Li , Yunyun Fan , Bo Liu 2021
The performances of Low Gain Avalanche diode (LGAD) sensors from a neutron irradiation campaign with fluences of 0.8 x 10^15, 15 x 10^15 and 2.5 x 10^15 neq/cm2 are reported in this article. These LGAD sensors are developed by the Institute of High E nergy Physics, Chinese Academy of Sciences and the Novel Device Laboratory for the High Granularity Timing Detector of the High Luminosity Large Hadron Collider. The timing resolution and collected charge of the LGAD sensors were measured with electrons from a beta source. After irradiation with a fluence of 2.5 x 10^15 neq/cm2, the collected charge decreases from 40 fC to 7 fC, the signal-to-noise ratio deteriorates from 48 to 12, and the timing resolution increases from 29 ps to 39 ps.
146 - Yuhang Tan , Tao Yang , Suyu Xiao 2020
We study the radiation effects of the Low Gain Avalanche Detector (LGAD) sensors developed by the Institute of High Energy Physics (IHEP) and the Novel Device Laboratory (NDL) of Beijing Normal University in China. These new sensors have been irradia ted at the China Institute of Atomic Energy (CIAE) using 100 MeV proton beam with five different fluences from 7$times10^{14}$ $n_{eq}/cm^2$ up to 4.5$times10^{15}$ $n_{eq}/cm^2$. The result shows the effective doping concentration in the gain layer decreases with the increase of irradiation fluence, as expected by the acceptor removal mechanism. By comparing data and model gives the acceptor removal coefficient $c_{A}$ = $(6.07pm0.70)times10^{-16}~cm^2$, which indicates the NDL sensor has fairly good radiation resistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا