ترغب بنشر مسار تعليمي؟ اضغط هنا

Extension of the HF program to partially filled f-subshells

594   0   0.0 ( 0 )
 نشر من قبل Gaigalas Gediminas Habil. dr.
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new version of a Hartree-Fock program is presented that includes extensions for partially filled f-subshells. The program allows the calculation of term dependent Hartree-Fock orbitals and energies in LS coupling for configurations with no more than two open subshells, including f-subshells.



قيم البحث

اقرأ أيضاً

We present a major update to ElecSus, a computer program and underlying model to calculate the electric susceptibility of an alkali-metal atomic vapour. Knowledge of the electric susceptibility of a medium is essential to predict its absorptive and d ispersive properties. In this version we implement several changes which significantly extend the range of applications of ElecSus, the most important of which is support for non-axial magnetic fields (i.e. fields which are not aligned with the light propagation axis). Suporting this change requires a much more general approach to light propagation in the system, which we have now implemented. We exemplify many of these new applications by comparing ElecSus to experimental data. In addition, we have developed a graphical user interface front-end which makes the program much more accessible, and have improved on several other minor areas of the program structure.
PYSCF is a Python-based general-purpose electronic structure platform that both supports first-principles simulations of molecules and solids, as well as accelerates the development of new methodology and complex computational workflows. The present paper explains the design and philosophy behind PYSCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PYSCF as a development environment. We then summarize the capabilities of PYSCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PYSCF across the domains of quantum chemistry, materials science, machine learning and quantum information science.
46 - Peng Li , Zhongzheng Wu , Fan Wu 2018
Here we report the evolution of bulk band structure and surface states in rare earth mono-bismuthides with partially filled f shell. Utilizing synchrotron-based photoemission spectroscopy, we determined the three-dimensional bulk band structure and identified the bulk band
In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.
The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF be gan in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا