ترغب بنشر مسار تعليمي؟ اضغط هنا

GEO 600 and the GEO-HF upgrade program: successes and challenges

100   0   0.0 ( 0 )
 نشر من قبل Katherine Dooley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges.



قيم البحث

اقرأ أيضاً

The German-British laser-interferometric gravitational wave detector GEO 600 is in its 13th year of operation since its first lock in 2001. After participating in science runs with other first generation detectors, GEO,600 has continued collecting da ta as an astrowatch instrument with a duty cycle of 62% during the time when the other detectors have gone offline to undergo substantial upgrades. Less invasive upgrades to demonstrate advanced technologies and improve the GEO 600 sensitivity at high frequencies as part of the GEO-HF program have additionally been carried out in parallel to data taking. We report briefly on the status of GEO 600.
Longitudinal control signals used to keep gravitational wave detectors at a stable operating point are often affected by modulations from test mass misalignments leading to an elevated noise floor ranging from 50 to 500 Hz. Nonstationary noise of thi s kind results in modulation sidebands and increases the number of glitches observed in the calibrated strain data. These artifacts ultimately affect the data quality and decrease the efficiency of the data analysis pipelines looking for astrophysical signals from continuous waves as well as the transient events. In this work, we develop a scheme to subtract one such bilinear noise from the gravitational wave strain data and demonstrate it at the GEO 600 observatory. We estimate the coupling by making use of narrow-band signal injections that are already in place for noise projection purposes and construct a coherent bilinear signal by a two-stage system identification process. We improve upon the existing filter design techniques by employing a Bayesian adaptive directed search strategy that optimizes across the several key parameters that affect the accuracy of the estimated model. The scheme takes into account the possible nonstationarities in the coupling by periodically updating the involved filter coefficients. The resulting postoffline subtraction leads to a suppression of modulation sidebands around the calibration lines along with a broadband reduction of the midfrequency noise floor. The observed increase in the astrophysical range and a reduction in the occurrence of nonastrophysical transients suggest that the above method is a viable data cleaning technique for current and future generation gravitational wave observatories.
LEO-to-GEO intersatellite links using laser communications bring important benefits to greatly enhance applications such as downloading big amounts of data from LEO satellites by using the GEO satellite as a relay. By using this strategy, the total a vailability of the LEO satellite increases from less than 1% if the data is downloaded directly to the ground up to about 60% if the data is relayed through GEO. The main drawback of using a GEO relay is that link budget is much more difficult to close due to the much larger distance. However, this can be partially compensated by transmitting at a lower data rate, and still benefiting from the much-higher link availability when compared to LEO-to-ground downlinks, which additionally are more limited by the clouds than the relay option. After carrying out a feasibility study, NICT and the University of Tokyo started preparing a mission to demonstrate the technologies needed to perform these challenging lasercom links. Furthermore, to demonstrate the feasibility of this technique, an extremely-small satellite, i.e. a 6U CubeSat, will be used to achieve data rates as high as 10 Gbit/s between LEO and GEO. Some of the biggest challenges of this mission are the extremely low size, weight and power available in the CubeSat, the accurate pointing precision required for the lasercom link, and the difficulties of closing the link at such a high speed as 10 Gbit/s.
113 - G. Bellini , A. Ianni , L. Ludhova 2013
We review a new interdisciplinary field between Geology and Physics: the study of the Earths geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earths geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted.
The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earths crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respe ct, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and K40 decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا