ﻻ يوجد ملخص باللغة العربية
We present a major update to ElecSus, a computer program and underlying model to calculate the electric susceptibility of an alkali-metal atomic vapour. Knowledge of the electric susceptibility of a medium is essential to predict its absorptive and dispersive properties. In this version we implement several changes which significantly extend the range of applications of ElecSus, the most important of which is support for non-axial magnetic fields (i.e. fields which are not aligned with the light propagation axis). Suporting this change requires a much more general approach to light propagation in the system, which we have now implemented. We exemplify many of these new applications by comparing ElecSus to experimental data. In addition, we have developed a graphical user interface front-end which makes the program much more accessible, and have improved on several other minor areas of the program structure.
A new version of a Hartree-Fock program is presented that includes extensions for partially filled f-subshells. The program allows the calculation of term dependent Hartree-Fock orbitals and energies in LS coupling for configurations with no more than two open subshells, including f-subshells.
The infrared optical, magneto-optical and magnetostrictive properties of CoFe2O4 single crystal are considered. The magneto-transmission and magneto-reflection of natural light in magnetostrictive CoFe2O4 spinel are studied in the Voight experimental
Optically trapped mixed-species single atom arrays with arbitrary geometries are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental
Atomic bandpass filters are widely used in a variety of applications, owing to their high peak transmission and narrow bandwidth. Much of the previous literature has used the Faraday effect to realize such filters, where an axial magnetic field is ap
We propose new multi-dimensional atom optics that can create coherent superpositions of atomic wavepackets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the t