ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent developments in the PySCF program package

316   0   0.0 ( 0 )
 نشر من قبل Xing Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PYSCF is a Python-based general-purpose electronic structure platform that both supports first-principles simulations of molecules and solids, as well as accelerates the development of new methodology and complex computational workflows. The present paper explains the design and philosophy behind PYSCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PYSCF as a development environment. We then summarize the capabilities of PYSCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PYSCF across the domains of quantum chemistry, materials science, machine learning and quantum information science.



قيم البحث

اقرأ أيضاً

We present an overview of recent developments in the tmLQCD software suite. We summarise the features of the code, including actions and operators implemented. In particular, we discuss the optimisation efforts for modern architectures using the Blue Gene/Q system as an example.
The Chronus Quantum (ChronusQ) software package is an open source (under the GNU General Public License v2) software infrastructure which targets the solution of challenging problems that arise in ab initio electronic structure theory. Special emphas is is placed on the consistent treatment of time dependence and spin in the electronic wave function, as well as the inclusion of relativistic effects in said treatments. In addition, ChronusQ provides support for the inclusion of uniform finite magnetic fields as external perturbations through the use of gauge-including atomic orbitals (GIAO). ChronusQ is a parallel electronic structure code written in modern C++ which utilizes both message passing (MPI) and shared memory (OpenMP) parallelism. In addition to the examination of the current state of code base itself, a discussion regarding ongoing developments and developer contributions will also be provided.
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a general framework based on the integral equations for the electric field. We review both the theory of the DDA and its numerical aspects, the latter being of critical importance for any practical application of the method. Finally, the position of the DDA among other methods of light scattering simulation is shown and possible future developments are discussed.
79 - Satoshi Mishima 2007
We review recent developments in the perturbative QCD approach to exclusive hadronic B meson decays. We discuss the important next-to-leading-order corrections to B -> pi K, pi pi, and the penguin-dominated B -> PV modes, where P (V) is a pseudo-scalar (vector) meson.
211 - Stefan Waldmann 2015
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o f view. Then we focus on two topics: the Morita classification of star product algebras and convergence issues which lead to the nuclear Weyl algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا