ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

215   0   0.0 ( 0 )
 نشر من قبل Andrew Stuchbery
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.


قيم البحث

اقرأ أيضاً

The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast rad ioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.
A precision mass investigation of the neutron-rich titanium isotopes $^{51-55}$Ti was performed at TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the $N=32$ shell closure and the overall uncertainties of the $^{52-55}$Ti mass values were significantly reduced. Our results confirm the existence of a weak shell effect at $N=32$, establishing the abrupt onset of this shell closure. Our data were compared with state-of-the-art textit{ab-initio} shell model calculations which, despite very successfully describing where the $N=32$ shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITANs Penning trap mass spectrometer.
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9 9}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.
Background: Neutron-rich nuclei around neutron number N = 60 show a dramatic shape transition from spherical ground states to prolate deformation in 98Sr and heavier nuclei. Purpose: The purpose of this study is to investigate the single-particle str ucture approaching the shape transitional region. Method: The level structures of neutron-rich 93,94,95Sr were studied via the d(94,95,96Sr,t) one-neutron stripping reactions at TRIUMF using a beam energy of 5.5 AMeV. {gamma}-rays emitted from excited states and recoiling charged particles were detected by using the TIGRESS and SHARC arrays, respectively. States were identified by gating on the excitation energy and, if possible, the coincident {gamma} radiation. Results: Triton angular distributions for the reactions populating states in ejectile nuclei 93,94,95Sr were compared with distorted wave Born approximation calculations to assign and revise spin and parity quantum numbers and extract spectroscopic factors. The results were compared with shell model calculations and the reverse (d,p) reactions and good agreement was obtained. Conclusions: The results for the d(94Sr,t)93Sr and d(95Sr,t)94Sr reactions are in good agreement with shell model calculations. A two level mixing analysis for the 0+ states in 94Sr suggest strong mixing of two shapes. For the d(96Sr,t)95Sr reaction the agreement with the shell model is less good. The configuration of the ground state of 96Sr is already more complex than predicted, and therefore indications for the shape transition can already be observed before N = 60.
The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molec ular Dynamics model(CoMD), which demonstrated that the <N/Z> of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا