ﻻ يوجد ملخص باللغة العربية
Background: Neutron-rich nuclei around neutron number N = 60 show a dramatic shape transition from spherical ground states to prolate deformation in 98Sr and heavier nuclei. Purpose: The purpose of this study is to investigate the single-particle structure approaching the shape transitional region. Method: The level structures of neutron-rich 93,94,95Sr were studied via the d(94,95,96Sr,t) one-neutron stripping reactions at TRIUMF using a beam energy of 5.5 AMeV. {gamma}-rays emitted from excited states and recoiling charged particles were detected by using the TIGRESS and SHARC arrays, respectively. States were identified by gating on the excitation energy and, if possible, the coincident {gamma} radiation. Results: Triton angular distributions for the reactions populating states in ejectile nuclei 93,94,95Sr were compared with distorted wave Born approximation calculations to assign and revise spin and parity quantum numbers and extract spectroscopic factors. The results were compared with shell model calculations and the reverse (d,p) reactions and good agreement was obtained. Conclusions: The results for the d(94Sr,t)93Sr and d(95Sr,t)94Sr reactions are in good agreement with shell model calculations. A two level mixing analysis for the 0+ states in 94Sr suggest strong mixing of two shapes. For the d(96Sr,t)95Sr reaction the agreement with the shell model is less good. The configuration of the ground state of 96Sr is already more complex than predicted, and therefore indications for the shape transition can already be observed before N = 60.
The region around neutron number N = 60 in the neutron-rich Sr and Zr nuclei is one of the most dramatic examples of a ground state shape transition from (near) spherical below N = 60 to strongly deformed shapes in the heavier isotopes. The single-pa
The spherical-to-prolate shape transition in neutron-rich Cr isotopes from N = 34 to 42 is studied by solving the collective Schru007fodinger equation for the five-dimensional quadrupole collective Hamiltonian. The collective potential and inertial f
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,9
The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approac