ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass measurements of neutron-rich Rb and Sr isotopes

85   0   0.0 ( 0 )
 نشر من قبل Renee Klawitter
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.

قيم البحث

اقرأ أيضاً

133 - C. Izzo , G. Bollen , M. Brodeur 2017
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approac h to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region, however a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N > 40 along the iron and cobalt chains. Here we present the first Penning trap measurements of $^{68,69}$Co, performed at the Low-Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. In addition, we perform ab initio calculations of ground state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces which predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near $^{68}$Ni.
119 - S. Cruz , K. Wimmer , P.C. Bender 2019
The region around neutron number N = 60 in the neutron-rich Sr and Zr nuclei is one of the most dramatic examples of a ground state shape transition from (near) spherical below N = 60 to strongly deformed shapes in the heavier isotopes. The single-pa rticle structure of 95-97Sr approaching the ground state shape transition at 98 Sr has been investigated via single-neutron transfer reactions using the (d, p) reaction in inverse kinematics. These reactions selectively populate states with a large overlap of the projectile ground state coupled to a neutron in a single-particle orbital. Radioactive 94,95,96Sr nuclei with energies of 5.5 AMeV were used to bombard a CD 2 target. Recoiling light charged particles and {gamma} rays were detected using a quasi-4{pi} silicon strip detector array and a 12 element Ge array. The excitation energy of states populated was reconstructed employing the missing mass method combined with {gamma}-ray tagging and differential cross sections for final states were extracted. A reaction model analysis of the angular distributions allowed for firm spin assignments to be made for the low-lying 352, 556 and 681 keV excited states in 95Sr and a constraint has been placed on the spin of the higher-lying 1666 keV state. Angular distributions have been extracted for 10 states populated in the d(95Sr,p)96Sr reaction, and constraints have been provided for the spins and parities of several final states. Results are compared to shell model calculations in several model spaces and the structure of low-lying states in 94Sr and 95Sr is well-described. The spectroscopic strength of the 0+ and 2 states in 96Sr is significantly more fragmented than predicted.
A precision mass investigation of the neutron-rich titanium isotopes $^{51-55}$Ti was performed at TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the $N=32$ shell closure and the overall uncertainties of the $^{52-55}$Ti mass values were significantly reduced. Our results confirm the existence of a weak shell effect at $N=32$, establishing the abrupt onset of this shell closure. Our data were compared with state-of-the-art textit{ab-initio} shell model calculations which, despite very successfully describing where the $N=32$ shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITANs Penning trap mass spectrometer.
The JYFLTRAP mass spectrometer was used to measure the masses of neutron-rich nuclei in the region between N = 28 to N = 82 with uncertainties better than 10 keV. The impacts on nuclear structure and the r-process paths are reviewed.
We report high-precision mass measurements of $^{50-55}$Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, u p to 0.7 MeV, from the previously recommended mass values for $^{53-55}$Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers $N=32$ and $N=34$ above proton-magic $Z=20$. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the $N=32$ isotone, confirming that the empirical neutron shell gap energies peak at the doubly-magic $^{52}$Ca. Moreover, our data, combined with other recent measurements, does not support the existence of closed neutron shell in $^{55}$Sc at $N=34$. The results were compared to predictions from both emph{ab initio} and phenomenological nuclear theories, which all had success describing $N=32$ neutron shell gap energies but were highly disparate in the description of the $N=34$ isotone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا