ترغب بنشر مسار تعليمي؟ اضغط هنا

Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

50   0   0.0 ( 0 )
 نشر من قبل Andrew Stuchbery
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.



قيم البحث

اقرأ أيضاً

The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams . There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radio active $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.
The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV a nd 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 <Ep < 1028 keV) can dramatically effect the extrapolation to energies of astrophysical interest. To facilitate a reliable extrapolation the 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.
The lifetimes of the first 2$^{+}$ states in the neutron-deficient $^{76,78}$Sr isotopes were measured using a unique combination of the $gamma$-ray line-shape method and two-step nucleon exchange reactions at intermediate energies. The transition ra tes for the 2$^{+}$ states were determined to be $B$(E2;2$^{+}$$to 0^{+}$) = 2220(270) e$^{2}$fm$^{4}$ for $^{76}$Sr and 1800(250) e$^{2}$fm$^{4}$ for $^{78}$Sr, corresponding to large deformation of $beta_2$ = 0.45(3) for $^{76}$Sr and 0.40(3) for $^{78}$Sr. The present data provide experimental evidence for mutually enhanced collectivity that occurs at $N$ = $Z$ = 38. The systematic behavior of the excitation energies and $B$(E2) values indicates a signature of shape coexistence in $^{76}$Sr, characterizing $^{76}$Sr as one of most deformed nuclei with an unusually reduced $E$(4$^{+}$)/$E$(2$^{+}$) ratio.
218 - Michael A. Famiano 2019
Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا