ترغب بنشر مسار تعليمي؟ اضغط هنا

GABRIELA : a new detector array for gamma-ray and conversion electron spectroscopy of transfermium elements

102   0   0.0 ( 0 )
 نشر من قبل Karl Hauschild
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف K. Hauschild




اسأل ChatGPT حول البحث

With the aid of the Geant4 Monte Carlo simulation package a new detection system has been designed for the focal plane of the recoil separator VASSILISSA situated at the Flerov Laboratory of Nuclear Reactions, JINR, Dubna. GABRIELA (Gamma Alpha Beta Recoil Investigations with the Electromagnetic Analyser VASSILISSA) has been optimised to detect the arrival of reaction products and their subsequent radioactive decays involving the emission of alpha- and beta-particles, fission fragments, gamma- and X-rays, and conversion electrons. The new detector system is described and the results of the first commissioning experiments are presented.

قيم البحث

اقرأ أيضاً

We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment to search for a small parity-violating directional asymmetry in the angular distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons by protons with a sensitivity of several ppb. The weak pion-nucleon coupling constant can be determined from this asymmetry. The small size of the asymmetry requires a high cold neutron flux, control of systematic errors at the ppb level, and the use of current mode gamma-ray detection with vacuum photo diodes and low-noise solid-state preamplifiers. The average detector photoelectron yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in the measurement is therefore dominated by the fluctuations in the number of gamma rays absorbed in the detector (counting statistics) rather than the intrinsic detector noise. The detectors were tested for noise performance, sensitivity to magnetic fields, pedestal stability and cosmic background. False asymmetries due to gain changes and electronic pickup in the detector system were measured to be consistent with zero to an accuracy of $10^{-9}$ in a few hours. We report on the design, operating criteria, and the results of measurements performed to test the detector array.
The GALILEO $gamma$-ray spectrometer has been constructed at the Legnaro National Laboratory of INFN (LNL-INFN). It can be coupled to advanced ancillary devices which allows nuclear structure studies employing the variety of in-beam $gamma$-ray spect roscopy methods. Such studies benefit from reactions induced by the intense stable beams delivered by the Tandem-ALPI-PIAVE accelerator complex and by the radioactive beams which will be provided by the SPES facility. In this paper we outline two experiments performed within the experimental campaign at GALILEO coupled to the EUCLIDES Si-ball and the Neutron Wall array. The first one was aimed at spectroscopic studies in A=31 mirror nuclei and the second one at measurements of lifetimes of excited states in nuclei in the vicinity of $^{100}$Sn.
The odd-$Z$ $^{251}$Md nucleus was studied using combined $gamma$-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, another rotational structure has been identif ied using $gamma$-$gamma$ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of $simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using $gamma$-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $Delta l = Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called Frozen Orbital approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.
A NaI(Tl) detector array called DALI2 (Detector Array for Low Intensity radiation 2) has been constructed for in-beam $gamma$-ray spectroscopy experiments with fast radioactive isotope (RI) beams. It consists typically of 186 NaI(Tl) scintillators co vering polar angles from $sim$15$^{circ}$ to $sim$160$^{circ}$ with an average angular resolution of 6$^{circ}$ in full width at half maximum. Its high granularity (good angular resolution) enables Doppler-shift corrections that result in, for example, 10% energy resolution and 20% full-energy photopeak efficiency for 1-MeV $gamma$ rays emitted from fast-moving nuclei (velocities of $v/c simeq 0.6$). DALI2 has been employed successfully in numerous experiments using fast RI beams with velocities of $v/c = 0.3 - 0.6$ provided by the RIKEN RI Beam Factory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا