ﻻ يوجد ملخص باللغة العربية
In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called Frozen Orbital approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.
The internal conversion coefficients (ICC) were calculated for all atomic subshells of the elements with 104<=Z<=126, the E1...E4, M1...M4 multipolarities and the transition energies between 10 and 1000 keV. The atomic screening was treated in the re
The internal conversion coefficients for the elements 104 <= Z <= 126 are presented.
We use the considered axial deformed relativistic mean field theory to perform systematical calculations for Z=112 and 104 isotopic chains with force parameters NL3, NL-SH and NL-Z2 sets. Three deformed chains (oblate, moderate prolate and super-defo
Possible sources of uncertainties in the calculations of the internal conversion coefficients are studied. The uncertainties induced by them are estimated.
The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion