ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-parametric estimation of the hazard function in a model with covariate measurement error

141   0   0.0 ( 0 )
 نشر من قبل Marie-Luce Taupin
 تاريخ النشر 2006
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a model where the failure hazard function, conditional on a covariate $Z$ is given by $R(t,theta^0|Z)=eta_{gamma^0}(t)f_{beta^0}(Z)$, with $theta^0=(beta^0,gamma^0)^topin mathbb{R}^{m+p}$. The baseline hazard function $eta_{gamma^0}$ and relative risk $f_{beta^0}$ belong both to parametric families. The covariate $Z$ is measured through the error model $U=Z+epsilon$ where $epsilon$ is independent from $Z$, with known density $f_epsilon$. We observe a $n$-sample $(X_i, D_i, U_i)$, $i=1,...,n$, where $X_i$ is the minimum between the failure time and the censoring time, and $D_i$ is the censoring indicator. We aim at estimating $theta^0$ in presence of the unknown density $g$. Our estimation procedure based on least squares criterion provide two estimators. The first one minimizes an estimation of the least squares criterion where $g$ is estimated by density deconvolution. Its rate depends on the smoothnesses of $f_epsilon$ and $f_beta(z)$ as a function of $z$,. We derive sufficient conditions that ensure the $sqrt{n}$-consistency. The second estimator is constructed under conditions ensuring that the least squares criterion can be directly estimated with the parametric rate. These estimators, deeply studied through examples are in particular $sqrt{n}$-consistent and asymptotically Gaussian in the Cox model and in the excess risk model, whatever is $f_epsilon$.



قيم البحث

اقرأ أيضاً

145 - Jean-Marc Azais 2018
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the m ean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
In this paper, we built a new nonparametric regression estimator with the local linear method by using the mean squared relative error as a loss function when the data are subject to random right censoring. We establish the uniform almost sure consis tency with rate over a compact set of the proposed estimator. Some simulations are given to show the asymptotic behavior of the estimate in different cases.
It is well known that the minimax rates of convergence of nonparametric density and regression function estimation of a random variable measured with error is much slower than the rate in the error free case. Surprisingly, we show that if one is will ing to impose a relatively mild assumption in requiring that the error-prone variable has a compact support, then the results can be greatly improved. We describe new and constructive methods to take full advantage of the compact support assumption via spline-assisted semiparametric methods. We further prove that the new estimator achieves the usual nonparametric rate in estimating both the density and regression functions as if there were no measurement error. The proof involves linear and bilinear operator theories, semiparametric theory, asymptotic analysis regarding Bsplines, as well as integral equation treatments. The performance of the new methods is demonstrated through several simulations and a data example.
We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation d escribing the dynamics on the longer diffusive time scale, i.e. in a homogenization framework. We examine the case where both the drift and the diffusion coefficients in the effective dynamics are space-dependent and depend on multiple unknown parameters. It is known that classical estimators, such as Maximum Likelihood and Quadratic Variation of the Path Estimators, fail to obtain reasonable estimates for parameters in the effective dynamics when based on observations of the underlying multiscale diffusion. We propose a novel algorithm for estimating both the drift and diffusion coefficients in the effective dynamics based on a semi-parametric framework. We demonstrate by means of extensive numerical simulations of a number of selected examples that the algorithm performs well when applied to data from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively to obtain accurate and unbiased estimates.
Kernel-based nonparametric hazard rate estimation is considered with a special class of infinite-order kernels that achieves favorable bias and mean square error properties. A fully automatic and adaptive implementation of a density and hazard rate e stimator is proposed for randomly right censored data. Careful selection of the bandwidth in the proposed estimators yields estimates that are more efficient in terms of overall mean squared error performance, and in some cases achieves a nearly parametric convergence rate. Additionally, rapidly converging bandwidth estimates are presented for use in second-order kernels to supplement such kernel-based methods in hazard rate estimation. Simulations illustrate the improved accuracy of the proposed estimator against other nonparametric estimators of the density and hazard function. A real data application is also presented on survival data from 13,166 breast carcinoma patients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا