ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric local linear estimation of the relative error regression function for censorship model

80   0   0.0 ( 0 )
 نشر من قبل Feriel Bouhadjera
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Feriel Bouhadjera




اسأل ChatGPT حول البحث

In this paper, we built a new nonparametric regression estimator with the local linear method by using the mean squared relative error as a loss function when the data are subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Some simulations are given to show the asymptotic behavior of the estimate in different cases.



قيم البحث

اقرأ أيضاً

We introduce and study a local linear nonparametric regression estimator for censorship model. The main goal of this paper is, to establish the uniform almost sure consistency result with rate over a compact set for the new estimate. To support our t heoretical result, a simulation study has been done to make comparison with the classical regression estimator.
Principled nonparametric tests for regression curvature in $mathbb{R}^{d}$ are often statistically and computationally challenging. This paper introduces the stratified incomplete local simplex (SILS) tests for joint concavity of nonparametric multip le regression. The SILS tests with suitable bootstrap calibration are shown to achieve simultaneous guarantees on dimension-free computational complexity, polynomial decay of the uniform error-in-size, and power consistency for general (global and local) alternatives. To establish these results, a general theory for incomplete $U$-processes with stratified random sparse weights is developed. Novel technical ingredients include maximal inequalities for the supremum of multiple incomplete $U$-processes.
The coefficient function of the leading differential operator is estimated from observations of a linear stochastic partial differential equation (SPDE). The estimation is based on continuous time observations which are localised in space. For the as ymptotic regime with fixed time horizon and with the spatial resolution of the observations tending to zero, we provide rate-optimal estimators and establish scaling limits of the deterministic PDE and of the SPDE on growing domains. The estimators are robust to lower order perturbations of the underlying differential operator and achieve the parametric rate even in the nonparametric setup with a spatially varying coefficient. A numerical example illustrates the main results.
We consider a model where the failure hazard function, conditional on a covariate $Z$ is given by $R(t,theta^0|Z)=eta_{gamma^0}(t)f_{beta^0}(Z)$, with $theta^0=(beta^0,gamma^0)^topin mathbb{R}^{m+p}$. The baseline hazard function $eta_{gamma^0}$ and relative risk $f_{beta^0}$ belong both to parametric families. The covariate $Z$ is measured through the error model $U=Z+epsilon$ where $epsilon$ is independent from $Z$, with known density $f_epsilon$. We observe a $n$-sample $(X_i, D_i, U_i)$, $i=1,...,n$, where $X_i$ is the minimum between the failure time and the censoring time, and $D_i$ is the censoring indicator. We aim at estimating $theta^0$ in presence of the unknown density $g$. Our estimation procedure based on least squares criterion provide two estimators. The first one minimizes an estimation of the least squares criterion where $g$ is estimated by density deconvolution. Its rate depends on the smoothnesses of $f_epsilon$ and $f_beta(z)$ as a function of $z$,. We derive sufficient conditions that ensure the $sqrt{n}$-consistency. The second estimator is constructed under conditions ensuring that the least squares criterion can be directly estimated with the parametric rate. These estimators, deeply studied through examples are in particular $sqrt{n}$-consistent and asymptotically Gaussian in the Cox model and in the excess risk model, whatever is $f_epsilon$.
This paper discusses a nonparametric regression model that naturally generalizes neural network models. The model is based on a finite number of one-dimensional transformations and can be estimated with a one-dimensional rate of convergence. The mode l contains the generalized additive model with unknown link function as a special case. For this case, it is shown that the additive components and link function can be estimated with the optimal rate by a smoothing spline that is the solution of a penalized least squares criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا