ﻻ يوجد ملخص باللغة العربية
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the mean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
We consider a model where the failure hazard function, conditional on a covariate $Z$ is given by $R(t,theta^0|Z)=eta_{gamma^0}(t)f_{beta^0}(Z)$, with $theta^0=(beta^0,gamma^0)^topin mathbb{R}^{m+p}$. The baseline hazard function $eta_{gamma^0}$ and
This paper deals with the maximum likelihood estimator for the mean-reverting parameter of a first order autoregressive models with exogenous variables, which are stationary Gaussian noises (Colored noise). Using the method of the Laplace transform,
In this paper we are interested in the Maximum Likelihood Estimator (MLE) of the vector parameter of an autoregressive process of order $p$ with regular stationary Gaussian noise. We exhibit the large sample asymptotical properties of the MLE under v
In this paper, we prove almost surely consistency of a Survival Analysis model, which puts a Gaussian process, mapped to the unit interval, as a prior on the so-called hazard function. We assume our data is given by survival lifetimes $T$ belonging t
We consider a sparse linear regression model with unknown symmetric error under the high-dimensional setting. The true error distribution is assumed to belong to the locally $beta$-H{o}lder class with an exponentially decreasing tail, which does not