ﻻ يوجد ملخص باللغة العربية
A microscopic model of a Josephson junction between two superconducting plates is proposed and analysed. For this model, the nonequilibrium steady state of the total system is explicitly constructed and its properties are analysed. In particular, the Josephson current is rigorously computed as a function of the phase difference of the two plates and the typical properties of the Josephson current are recovered.
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition t
We show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field. Moreover
We prove the hydrodynamic limit for the symmetric exclusion process with long jumps given by a mean zero probability transition rate with infinite variance and in contact with infinitely many reservoirs with density $alpha$ at the left of the system
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po
We create and study persistent currents in a toroidal two-component Bose gas, consisting of $^{87}$Rb atoms in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for over two minutes. However we find